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ABSTRACT

This paper presents our work of training acoustic event detec-
tion (AED) models using unlabeled dataset. Recent acoustic
event detectors are based on large-scale neural networks,
which are typically trained with huge amounts of labeled
data. Labels for acoustic events are expensive to obtain, and
relevant acoustic event audios can be limited, especially for
rare events. In this paper we leverage an Internet-scale un-
labeled dataset with potential domain shift to improve the
detection of acoustic events. Based on the classic tri-training
approach, our proposed method shows accuracy improve-
ment over both the supervised training baseline, and semi-
supervised self-training set-up, in all pre-defined acoustic
event detection tasks. As our approach relies on ensemble
models, we further show the improvements can be distilled to
a single model via knowledge distillation, with the resulting
single student model maintaining high accuracy of teacher
ensemble models.

Index Terms— acoustic event detection, tri-training,
semi-supervised learning

1. INTRODUCTION

Acoustic event detection (AED) is the task of detecting
whether certain events occur in an audio clip. It can be applied
in many areas such as surveillance [1, 2], and recommenda-
tion systems [3]. Conventionally AED has been addressed
with automatic speech recognition techniques, e.g. with fea-
tures such as mel-frequency cepstrum coefficients (MFCC)
and classifiers based on hidden markov model (HMM). In
recent years, with the advances in speech recognition [4] and
image recognition [5] as well as size increasing of datasets
[6][7], there are more deep learning based approaches applied
to tackle AED tasks. For instance, the recently proposed Au-
dioset [6] comprises 1,789,621 10-second audio segments
from a wide domain of 632 categories. Convolutional neu-
ral network (CNN) [8, 9] or CNN-based approaches (e.g
convolutional recurrent neural network [10, 11]) are used
and have shown improvements over traditional approaches.
Though accuracy has been much improved in many AED
tasks, state-of-the-art models often requires large number of

labeled training data. Labeled data can be be quite limited
under certain scenarios (e.g., for rare events [12]). The focus
of this paper is on leveraging unlabeled audios to improve
accuracy for AED.

Our main contributions include the following: (1). We
propose an ensemble method based on the classic tri-training
that shows improvements in all acoustic events we investigate
in a realistic semi-supervised setting (Internet-scale unlabeled
dataset with domain shift) (2). We show the improvements of
the ensembled models can be distilled into a single model via
knowledge distillation. As a result, there is no increase of
computational costs during inference.

2. RELATED WORK

There has been a great volume of work on semi-supervised
learning. A broad class of approaches contains feature learn-
ing with unlabeled data, based on generative models including
variational autoencoders [13], or generative adversarial net-
works [14, 15]. Another category of semi-supervised learning
approaches is based on achieving certain smoothness effects
with unlabeled data. For example, virtual adversarial training
[16] relies on smoothing model training with an regularization
term based on adversarial direction. Those semi-supervised
models are often evaluated in a ’simulated’ setting by discard-
ing many labels from an existing large labeled dataset, and
they are sensitive to class distribution mismatch [17]. Instead,
our approach belongs to the family of bootstrapping meth-
ods, where models are often treated as a black box to assign
pseudo labels on unlabeled data. Self-training is the simplest
one of such category, which refers to retraining a model based
on its own predictions on unlabeled data. Despite its simplic-
ity, self-training has been widely applied in practice. [18] pro-
posed an approach based on self-training to visual structure
prediction problems. For AED, self-training is employed to
perform semi-supervised learning from Youtube audios [19].
Compared to previous efforts, our method is simpler but ef-
fective. The whole method can be directly built on audio fea-
tures, e.g. log mel-filter bank energies (LFBEs), without in-
volving complex data augmentation steps as in [18, 20]. Our
experiments are placed in a realistic setting where unlabeled
data come from Internet, and form a dissimilar distribution
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from the labeled dataset.

3. METHODS

In this section we describe the methods we use for semi-
supervised learning. We focus on a multi-event classification
setting. Given an audio signal I (e.g. LFBE), the task is to
train a model f to predict a multi-hot vector y ∈ {0, 1}C with
C being the size of event set E and yc being a binary indicator
whether event c is present in I . Note the prediction f(I) is
not a distribution over event set E since multiple events can
occur in I . We denote DL = {(I,y)} as the labeled datset
and DUL = {I} as the unlabeled dataset. In supervised set-
ting, we train model f using cross-entropy loss (see equation
1), where wc is the penalty of positive mis-classification of
class c. wc is tuned to balance losses computed from positive
and negative instances.

L = −
∑

(I,y)∈DL

C∑
c=1

{wcyc log fc(I)+(1−yc) log(1−fc(I))}

(1)
Self-training is a natural heuristic, which leverages a

trained model to make predictions on unlabeled data and uses
resulting pseudo labels to update the model . More formally,
self-training consists of the following iterative process. A
model f is initially trained with minimizing loss defined in
equation 1 with labeled data DL. At each iteration, we assign
probability p(x) ∈ RC to every unlabeled example x ∈ DUL

by applying model f . Top k unlabeled data are selected for
each class and added to the labeled dataset L based on class
score mc(·), ∀c ∈ C. Model f is re-trained with labeled
dataset L′ augmented with kC examples from DUL. Instead
of directly setting a threshold for selecting data, we sort and
select examples from DUL. As the model is applied on a
different dataset DUL with inevitable domain shifts at test
time, relative order of confidence is more reliable than the
absolute value of probabilty p.

Tri-training One flaw of self-training is that the mistakes
made by the model can be amplified by adding errorneous
data. To avoid this, we can train multiple models and add data
according to the agreement of those models. In tri-training
[21], we first train three models f1, f2, f3 independently. New
data is added to train a particular model if other two mod-
els agrees on its label. In our multi-binary classification set-
ting specifically, we train three different models by bootstrap-
ping the training set. Data x is considered as a pseudo-label
candidate for class c of one model if its probability output
by other two models are sufficiently high. We select top k
pseudo-labeled candidate data according to its score for each
class (e.g. average probability of other two models) (see Al-
gorithm 1). The data augmentation process is repeated for
certain number of iterations. In classic tri-training, the final
three models are ensembled during test time. However, in

many real-world applications, the data distribution of unla-
beled dataset can vary from labeled dataset, where the test
set is from. Thus we ensemble models augmented through
tri-training scheme, as well as the initial models trained with
bootstrapped labeled data. As a results, there are in total 6
models ensembed, as shown at the end of Algorithm 1.

Algorithm 1: Ensemble-based tri-training

Initialize;
for i ∈ {1, 2, 3} do
D0

i = bootstrap(DL);
Train f0i using eq.1 with D0

i ;
end
for t ∈ {1, ..., T} do

for i ∈ {1, 2, 3} do
Dt

i ← ∅;
for x ∈ DUL do
Pc ← ∅;
for c ∈ {1, ..., C} do

if f t−1jc (x) > θc ∧ f t−1hc (x) > θc(j 6=
h 6= i) then

Pc ← Pc ∪ {(x,
ft−1
jc (x)+ft−1

hc (x)

2 )};
end
Dt

i ← Dt
i ∪ top-k(Pc);

end
end

Train f ti using eq.1 with
t⋃

t′=0

Dt′

i ;

end
end
Ensemble fTi and f0i (i ∈ {1, 2, 3});

In our tri-training scheme, we need to rely on ensem-
ble of models for test. In reality this can take a lot of time
and induce heavy memory and computation burdens, partic-
ularly for resource-constraint applications. Thus we propose
to ”trasnfer” the ensembled models into a single model with
knowledge distillation. Specifically, we train a single model
fs (student) to mimic its output distribution to the ensembled
model fe by minimizing loss 2 adapted from the commonly
used single-class classification setting [22].

Lkd =
∑

(I,y)∈DL

{αT 2l(I, fe(T )) + (1− α)l(I,y)}

l(I,y′) =

C∑
c=1

{wcy
′
c log f

s
c (I) + (1− y′c) log(1− fsc (I))}

fe(T ) =
1

1 + exp(− z
T )

(2)

, where z is the logits of ensembled model. T and α are hy-
perparameters controlling the softness of teacher logits z and
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relative weight of distillation loss, respectively. For ensem-
bling, we average the probabilities output by individual mod-
els and convert it back to logits. Note that only labeled dataset
DL is used for training single student model.

4. EXPERIMENTS

4.1. Experimental Setting

Data The labeled dataset we use is a subset from Audioset
[6]. In particular, we select dog sound, baby crying and
gunshots as the target events, which include both human and
non-human vocals, as well as different durations of sound
events. The three events included in Audioset amount to
13,460, 2,313 and 4,083 respectively, and we use all of them.
All the three events are often considered rare events where
number of labeled examples are quite limited in many real-
world application scenarios. Note the class of dog contains
any sounds produced by dog (e.g., barking, yipping), which
makes the intra-class variation much bigger compared to
other two events.

In addition to the three events, we randomly selected
36,036 examples from all other audio clips in Audioset as
negative samples. The negative vs. positive ratio is high
especially for baby crying and gunshots (> 10), which also
aims to simulate the scarcity property of those rare events.
We randomly split the whole subset for training (70%), val-
idation (10%) and test (20%). Additional efforts has been
made to ensure the distribution of events roughly same across
different sets.

We use Amazon Instant Video (AIV) as our unlabeled
dataset. The AIV data is a collection of audio parts of
Amazon instant videos. To be consistent with Audioset,
we split AIV audios into 10-second segments and the amount
is 5,404,106 in total. Note the domain difference between
AIV and Audioset can be large because AIV set is mainly
media sounds (e.g. from films and TV shows) while the latter
one contains many audio clips taken in real life.

Implementation details We first compute LFBE features
for each audio clip. It is calculated with window size of 25 ms
and hop size of 10 ms. The number of mel coefficients is 64,
which gives us log-mel spectrogram feature of size 998× 64
for each audio clip. Features are further normalized by global
cepstral mean and variance normalization (CMVN).

We use DenseNet [23] with 63 layers as our backbone
model. The DenseNet we use contains 4 dense blocks with
respectively 3, 6, 12 and 8 dense layers, where each layer is
composed of batch normalization, ReLU, 1 × 1 convolution,
batch normalization, ReLU and 3×3 convolution. The choice
of model is based on dev performance under fully-supervised
setting. As we have to run inference on large amount of unla-
beled data, inference speed is also an important factor along
with the accuracy. Our experimented models include ResNet
[24], DenseNet and Conv-RNN [25, 26] with different lay-

ers, which are among the state-of-the-art models for acoustic
event detection. According to our experiments, DenseNet-63
achieves highest accuracy and also has relative small infer-
ence latency.

For ensemble-based tri-training, we pick the top 5,000
data for each class following algorithm 1. The number is
tuned with dev set and will be analyzed in following sections.
Model is re-trained from scratch when pseudo-labeled data
are added. The tri-training process is repeated for one itera-
tion. Here we did not observe further improvement by taking
more iterations. For all experiments we use Adam optimizer
with learning rate of 0.001 and batch size of 64. We tuned
penalty on positive loss (wc) on dev set and found setting it to
be the ratio between positive and negative examples of each
class gives overall best results. This also prevents from tuning
wc for every class under different settings.

Evaluation Metric We evaluate the performance of mod-
els based on area under curve (AUC) and equal error rate
(EER) on detection error tradeoff (DET) curve (vertical: false
negative rate (FNR), horizontal: false positive rate (FPR)).
Performance is measured for individual events.

Baselines We compare ensemble based tri-training with
the following two baselines. (1) Fully-supervised DenseNet-
63, and (2) Self-training. Both baseline model training fol-
lows the same experimental setting as tri-training, but with a
single DenseNet-63.

4.2. Results

The results of different models are shown in table 1. The pro-
posed ensemble-based tri-training outperforms other semi-
supervised learning approaches in all three tasks. Detailed
analysis on the improvements will be presented in the fol-
lowing analysis section. In principle, semi-supervised ap-
proaches should be lower-bounded by the fully-supervised
baseline. But as we evaluate classes individually, it is pos-
sible to have degradation for some classes. For gunshots,
all semi-supervised approaches improves over the supervised
baseline. This may be related to the small domain discrep-
ancy between unlabeled and labeled datasets for this particu-
lar event. We find many gunshot audioclips in Audioset are
from multi-media source (e.g. video games), which is sim-
ilar to the unlabeled AIV data. This shows semi-supervised
learning helps especially when labeled and unlabeled data are
from same domain.

The results of knowledge distillation trained DenseNet-
63 (Tri-KD) with ensemble of tri-training models as teacher
are also listed in table 1. Though there is small degradation
compared to the tri-training, it outperforms the other single
models. The improvement shows that it is possible to distill
the gain brought by using large amount of unlabeled data into
a single supervised-trained model, so that there are no addi-
tional computational costs during inference.

Ablation Study There are three factors contributing to the
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AUC (%) EER (%)
Event Sups Selfs Trie Tri-KDs Sups Selfs Trie Tri-KDs

Dog 4.32 4.42 3.26 3.49 11.11 11.07 9.29 9.80
Baby-cry 2.20 2.89 1.42 1.69 6.56 7.34 5.41 6.01
Gunshots 2.07 1.77 1.31 1.51 6.41 5.78 4.70 5.41

Table 1. Performance of models (on test set). Lower is bet-
ter. Sup: fully-supervised baseline, Self: self-training, Tri:
ensemble-based tri-training, Tri-KD: distilled model from en-
sembled tri-training models, e: Ensembled model, s: Single
model

performance improvements for semi-supervised training: the
scale of model, unlabeled data, ensemble of models. We fur-
ther study the effects of these factors on the models and re-
sults are shown in table 2. To avoid tuning on test set, all
analysis are done on dev set. Compared to other approaches,
tri-training has more diversity as three models are trained by
bootstrapping the original training set. This increased scale
brings improvements over the baseline even without any unla-
beled data. Adding unlabeled data improves the performance
in general despite small degradation of EER on baby crying.
In binary classification on imbalanced data, adding pseudo-
labeled data balances the training set and we observed model
converged much faster compared to supervised baseline. The
unapparent improvement on baby crying is related to the do-
main difference between the unlabeled and labeled datasets.
We also observe that simple ensemble of models trained with
and without unlabeled data can mitigate the side-effects of
using unlabeled data brought by domain discrepancy.

AUC (%) EER (%)

Event Sup +Ens
+Ens
+Data

+2xEns
+Data

Sup +Ens
+Ens
+Data

+2xEns
+Data

Dog 4.48 3.96 3.29 3.28 11.06 9.81 9.09 8.95
Baby-cry 2.89 2.86 2.75 2.57 8.30 7.95 8.71 8.21
Gunshots 2.46 1.53 1.39 1.28 7.68 6.11 5.41 5.22

Table 2. How different factors contributes to the performance
of tri-training (on dev set). Lower is better. Sup: supervised
baseline, +Ens: ensembled 3 models trained with only labeled
data, +Ens+Data: ensembled tri-training models with unla-
beled data, 2xEns+Data: ensembled tri-training models with
and without unlabeled data. Note that Sup in table 2 and Sups

in table 1, 2xEns+Data in table 2 and Tri in table 1 refer to
same approach.

Varying amount of pseudo-labeled data Number of
pseudo-labeled data to add is an important hyper-parameter to
tune. Table 3 summarizes our analysis on this front. Adding
more pseudo-labeled data raises the percentage of data with
wrong labels in training set. We find that within certain range,
the side-effects brought by the noisy data can be compensated
by the data amount. Adding few data with high confidence
is not as effective, because those are mainly ”easy” data with
which models are not guaranteed to be strengthened. Varying

the data amount does not have as much impact on baby crying
as other two events, which may be related to the domain shift
of this particular event in unlabeled dataset.

AUC (%) EER (%)
Event 1k 5k 10k 1k 5k 10k
Dog 3.82 3.28 4.02 10.02 8.95 10.46

Baby-cry 2.69 2.57 2.82 8.20 8.21 8.73
Gunshots 2.09 1.28 1.75 6.46 5.22 6.16

Table 3. How number of pseudo-labeled data impact perfor-
mance (of Tri in table 1, on dev set). Lower is better. Our
experimental results described earlier are based on 5k.

Varying size of labeled training set In our default exper-
imental setting, we have a relatively larger training set (ratio
of train set to test set = 3.5). To see how the model performs
with different size of training set, we reduced number of train-
ing data. Specifically we keep the same test and validation set
and change the ratio between training and test set to {0.5,
1.0, 2.0, 3.5} (3.5 is the whole original training set). Accord-
ing to figure 1, our semi-supervised learning approach shows
consistent gains with different size of training set, and using
unlabeled data brings more gain when training set is relatively
smaller.

Fig. 1. Average AUC (%) and EER (%) (on test) of three
events with different training set to test set ratio. Training
dataset is sampled according to each train vs. test ratio

5. CONCLUSIONS

We investigate using large number of unlabeled data to im-
prove acoustic event detection. Our proposed approach which
is based on classic tri-training with ensembling shows consis-
tent improvements over models trained with labeled data, as
well as with self-training. In addition, we show that such im-
provements brought by the ensembled tri-training models can
be distilled into a single model, which shows improved accu-
racy with same computational cost during inference.
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