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ABSTRACT

In this paper, we investigate the coding efficiency of percep-
tual coding using an adaptive non-uniform orthogonal filter-
bank based on MDCT analysis/synthesis and time domain
aliasing reduction. We compare its performance to a system
using a traditional adaptive uniform MDCT filterbank with
window switching. The comparison is performed using a lis-
tening test at two different quantization settings. The statis-
tical evaluation shows that the percetpual quality of the non-
uniform filterbank significantly out-performs that of the uni-
form filterbank by 5 to 10 MUSHRA points.

Index Terms— TDAC, MDCT, Perceptual Coding,
Time-Frequency Transform

1. INTRODUCTION

In perceptual coding, entropy and thus bitrate is commonly
reduced by discarding redundant and perceptually irrelevant
information. This is achieved using a filterbank and quantiza-
tion. This filterbank, a quantizer and a psychoacoustic model
are used together to shape the quantization noise so it is as
close to the masking threshold as possible, as to maximize
the coding efficiency and perceptual quality of the overall sys-
tem [2].

During synthesis, quantization noise will be shaped in
time and frequency by the spectral and temporal shape of the
filterbank’s impulse and frequency response. It follows that,
to allow fine-grained control of the quantization noise-shape,
it is desirable to use a filterbank with an impulse response
compact in both time and frequency.

The most commonly used critically sampled filterbank
with these properties is the modified discrete cosine transform
(MDCT), a filterbank which has a uniform time/frequency
resolution in all bands.

However, the human auditory system exhibits a non-
uniform time/frequency resolution [3], resulting in different
masking threshold shapes for different frequencies. It is thus
expected that a non-uniform filterbank with compact impulse
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responses will be able to follow the masking threshold more
closely in both high and low frequencies. This allows, with-
out introducting audible artifacts, the introduction of more
quantization noise, thereby allowing for a lower bitrate than
a uniform filterbank.

In our previous work, we were able to show that a
non-uniform orthogonal filterbank based on cascading two
MDCTs and time domain aliasing reduction (TDAR) was
able to achieve impulse responses that were compact in both
time and frequency [1]. A similar approach was published
in [4], albeit without overlap in frequency, and limited to a
sine-window in time.

In this work, we will evaluate the perceptual quality of
such a non-uniform filterbank in an audio coder, and compare
it to the performance of a uniform filterbank with window
switching as used in current coders, such as Advanced Audio
Coding (AAC) [5].

2. CODING SYSTEM

The evaluation system models a simple perceptual coder, with
an analysis filterbank, a psychoacoustic model [6, 7], quan-
tizer, perceptual entropy estimation [8], and a synthesis fil-
terbank. In the two competing systems, the filterbank was
either a uniform MDCT with window-switching [9] (WS), or
a non-uniform MDCT with subband-merging and TDAR [1]
(denoted by SM).

The relevant filterbank-parameters — window-switching
boundaries for the uniform MDCT, or mergefactors and
TDAR boundaries for the non-uniform MDCT — were adap-
tively and optimally chosen to minimize the overall remaining
entropy. No additional post-processing steps or coding-tools
were used.

2.1. Filterbank Parameters

The window switching filterbank uses an MDCT with the
usual AAC frame lengths: long frames of 1024 samples or
8 short frames of 128 samples and appropriate transition win-
dows between them. The cosine window was used.

The subband merging filterbank uses an initial MDCT
with frame length 1024, and then divides the spectrum
into 8 mergefactor-bands of 128 coefficients each. Each
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mergefactor-band may then be merged with a series of
MDCTs with identical frame lengths N ∈ {1, 2, 4, 8, 16, 32},
called a mergefactor. As per design of the system, during
analysis the optimal choice in mergefactors was not known
yet, and each mergefactor-band does not know the merge-
factor of any of its neighbors. Thus, the windows at the
mergefactor-band edges were chosen to always be asymmet-
rical, and steep enough to accomodate the steepest possible
neighbor mergefactor, see Figure 1.
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Fig. 1. Example window choices in four mergefactor-bands.
Steep transition windows at the mergefactor-band edges are
highlighted in black.

This design choice limits the overall flexibility of the
filterbank and introduces less-than-ideal temporal ripples
for these asymmetric windows [1], but offers a way to effi-
ciently and independently optimize the mergefactor for each
mergefactor-band.

The cosine window was used as the transform window,
and a Kaiser-Bessel-derived window with β = 5.1 was used
as the merge window.

Finally, quantization step sizes are controlled using a real
valued distortion parameter q, which multiplicatively lowers
or raises the estimated masking threshold from the percep-
tual model by the constant factor q. After quantization, the
perceptual entropy estimator calculates a theoretical bitrate r,
which naturally is dependent on q. For q = 1.0, the psychoa-
coustic model predicts transparent coding without any audible
artifacts, for larger values q > 1.0, quantization stepsize in-
creases, the bitrate r drops, and the perceived quality of the
resulting decoded signal is expected to deteriorate.

2.2. Parameter Optimization

To perform optimal parameter tuning, each signal was trans-
formed and quantized using all possible parameter combi-
nations, and the perceptual entropy of each frame for each
parameter was estimated. Among all of the output coeffi-
cients, an optimal combination of parameters that minimizes
the overal perceptual entropy was computed, and the output
signal was then synthesized using these parameters.

To find optimal filterbank parameters, each mergefactor-
band in each frame (a merge-tile of 128 coefficients) was
quantized and its entropy was calculated. The graph of all
parameters of all merge-tiles in one mergefactor-band then

forms a trellis, where each transition weight equals the en-
tropy of the following merge-tile.

As previously noted, not all parameter combinations and
transitions will allow perfect reconstruction during synthesis,
e.g. when switching from long to short frames, an asymmetric
start window must be used inbetween. Similar rules apply for
the use of TDAR in the non-uniform filterbank [1]. To pre-
vent these illegal parameter transitions, the transition weights
in the trellis were multiplied with a mask that encodes all le-
gal and illegal transitions, i.e. 1 for legal and ∞ for illegal
transitions. For window switching this method is described in
great detail in [10].

Afterwards, a minimum-weight path through the trellis
was computed using dynamic programming, resulting in an
overal optimal parameter path in each individual mergefactor
band that also guarantees perfect reconstruction.

This approach requires multiple encoding passes, a very
large lookahead, and is thus not suitable for an actual on-line
coder. However it guarantees that both methods performed
at their highest possible efficiency at all times. For online
encoding, methods for decoding such trellis diagrams under
latency constraints exist [11].

Both systems assumed simple and uncompressed trans-
mission of necessary side information: for window switching,
1 bit was used for each frame to signal long- and short-
frames (dlog2(2)e = 1). For subband merging, 29 bits were
used per frame to signal mergefactor and TDAR flag (8
mergefactor-bands with 6 mergefactors and 2 TDAR values
each, dlog2((6 × 2)8)e = 29). Scale factors or masking
thresholds were known at the decoder side.

3. GENERAL OBSERVATIONS

After running the encoding/decoding process, one can ob-
serve the following properties:

In the highest two to three mergefactor-bands, ranging
from 15 kHz–24 kHz, the coder almost always chose a
mergefactor of 1, disabling merging. In the midsection,
mergefactor-bands 2–5 or frequency range between 3 kHz–
15 kHz, the coder mainly chose either mergefactor 1 or 32. In
the lower mergefactor-band, ranging from 0 kHz–3 kHz, the
coder mostly chose mergefactors 1 and 2. Mergefactors 4, 8,
and 16 were rarely chosen, see Figure 2.

This observation agrees with basic assumptions about the
auditory system: the high frequencies exhibit a very high
threshold in quiet, so effectively almost everything is quan-
tized to zero, making the choice in mergefactor irrelevant. In
the mid-range frequencies the auditory system has a high tem-
poral resolution, while in the lower frequencies, the human
ear has a higher frequency resolution.

Secondly, one notices that for any chosen distortion pa-
rameter q, the corresponding bitrate of the subband merging
filterbank is below that of the window switching filterbank.
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Fig. 2. Distributions of Mergefactor (MF) and Time Domain
Aliasing Reduction (TDAR) choices made by the coder.

On average, the non-uniform system required 5–13% fewer
bits per sample to code the signals, see Figure 3.

4. LISTENING TEST SETUP

While the lower average bitrate achieved in Section 3 in it-
self is a nice result, it doesn’t say anything about the percep-
tual quality of the system. What remains to be shown is that
the two systems performed at a comparable perceptual quality
level, or that we can use the bitrate difference to improve the
perceptual quality of the more efficient system.

To test this, three different quality settings at different
quantizer stepsize coefficients and thus average bitrates were
considered: high quality (HQ), medium quality (MQ) and low
quality (LQ), see Table 1.

q avg. Rate

High Quality (HQ) 1.0 ~ 46 kbps
Medium Quality (MQ) 2.75 ~ 26 kbps
Low Quality (LQ) 4.0 ~ 18 kbps

Table 1. Quality settings and their distortion parameter q and
resulting average bitrate.

As per design of the perceptual model, for HQ no audible
artifacts were expected [7]. And indeed, during small-scale
ABC/HR (ITU-R BS.1116–3) [12] listening tests, expert lis-
teners could not discern significant differences between either
method and the reference signal. As conducting such a listen-
ing test on a larger scale is very exhausting but unlikely to
reveal any meaningful results, it was skipped in favor of the
two remaining quality settings MQ and LQ.
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Fig. 3. Average bitrates of the two systems for different dis-
tortion parameters q over 39 test items. Second plot shows
the ratio between the two average bitrates.

For MQ and LQ, the distortion parameter q of the win-
dow switching filterbank system was chosen such that its out-
put bitrate matched that of the subband merging filterbank.
This means that the distortion parameter q for the subband
merging filterbank was lower than for the window switching
filterbank. By that, we show that we can achieve a higher per-
ceived quality, while allowing the same bitrate as for the win-
dow switching filterbank. To test this, a listening test using
the Multi-Stimulus Test with Hidden Reference and Anchor
method (MUSHRA, ITU-R BS.1534–3) [13] was conducted.

5. TEST SIGNAL CORPUS

The test signals for this evaluation were taken from a set of
signals used for audio coder development and tuning. It com-
prised male and female speech, and several music recordings
containing both harmonic and percussive sounds. All condi-
tions were loudness normalized to -30 dB LUFS using ITU-R
BS.1770–4 [14]. See Table 2.

ID Name

s01 Castanets
s02 Suzanne Vega — Tom’s Diner
s03 German Male Speaker
s04 English Female Speaker
s05 Unknown — A Foggy Day
s06 Tracy Chapman — Mountain O’ Things
s07 Ornette Coleman — In All Languages
s08 Fools Garden — Lemon Tree

Table 2. Test items
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W p

MQ 0.90 < .001

LQ 0.95 < .001

Table 3. Results of Shapiro-Wilk test for normality for the
pairwise MUSHRA score differences between the window
switching filterbank (WS) and subband merging filterbank
(SM) at medium quality (MQ) and low quality (LQ) settings.
The parameter W denotes W-statistic and p denotes p-value.
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Fig. 4. Distributions and kernel density estimates of
MUSHRA score differences between the window switching
filterbank and subband merging filterbank at medium quality
(MQ) and low quality (LQ) quality settings.

6. LISTENING TEST RESULTS

A total of N=16 expert listeners took part in the test.
First, a Shapiro-Wilk test was used to test the pairwise

differences in MUSHRA scores between the two methods for
normality. For LQ and MQ, the differences were significantly
non-normal, see Table 3 and Figure 4. We therefore used a
non-parametric Wilcoxon signed-rank test instead of the para-
metric paired t-test on all our conditions. A summary of all
tests can be seen in Table 4.

A Wilcoxon signed-rank test was conducted to compare
the perceptual quality of the two systems at MQ. There was a
significant difference in the MUSHRA scores for the window
switching filterbank and the subband merging filterbank, p <
.001.

Secondly, a Wilcoxon signed-rank test was conducted
to compare the perceptual quality of the two systems at
quality setting LQ. There was a significant difference in the
MUSHRA scores for the window switching filterbank and
the subband merging filterbank, p < .001.

When comparing means and 95% confidence intervals of
MUSHRA score differences for individual items, which are
also commonly reported [13], the non-uniform filterbank con-
sistently outperformed the window switching filterbank for all
test items except one, see Figure 5.

Median (IQR) W p

MQ WS 70.00 (27.50) 2070.50 < .001
SM 80.00 (23.00)

LQ WS 46.50 (33.00) 2181.00 < .001
SM 51.50 (25.25)

Table 4. Median, Inter Quantile Range (IQR), and Wilcoxon
signed-rank test results for the MUSHRA scores comparing
the window switching filterbank (WS) and subband merging
filterbank (SM) at medium quality (MQ) and low quality (LQ)
quality settings. The parameter W denotes W-statistic and p
denotes p-value.
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Fig. 5. Mean and 95% confidence intervals of MUSHRA
score differences for individual items, window switching fil-
terbank and subband merging filterbank at medium quality
(MQ) and low quality (LQ) quality settings. Positive values
favor subband merging over window switching.

7. CONCLUSION

In this paper, we presented a method of using a non-uniform
orthogonal filterbank based on MDCT analysis/synthesis and
TDAR in a simple audio coder. Its coding efficiency was then
compared to a uniform window switching MDCT filterbank.
On average, the non-uniform filterbank required 5–13% fewer
bits per sample to code the test signals. This additional cod-
ing efficiency was subsequently used to improve the perceived
quality of the coder at the same output bitrate. The improved
perceived quality of 5 to 10 MUSHRA points was ascertained
using a MUSHRA listening test and a subsequent statistical
analysis. The difference in perceived quality was found to be
statistically significant.

743



8. REFERENCES

[1] N. Werner and B. Edler, “Nonuniform Orthogonal
Filterbanks Based on MDCT Analysis/Synthesis and
Time-Domain Aliasing Reduction,” IEEE Signal Pro-
cessing Letters, vol. 24, no. 5, pp. 589–593, May 2017.

[2] Fernando C. Pereira and Touradj Ebrahimi, The MPEG-
4 Book, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2002.

[3] Brian C. J. Moore and Brian R. Glasberg, “Suggested
formulae for calculating auditory-filter bandwidths and
excitation patterns,” The Journal of the Acoustical Soci-
ety of America, vol. 74, no. 3, pp. 750–753, Sept. 1983.

[4] M. Purat and P. Noll, “A new orthonormal wavelet
packet decomposition for audio coding using frequency-
varying modulated lapped transforms,” in Proceedings
of 1995 Workshop on Applications of Signal Processing
to Audio and Accoustics, Oct. 1995, pp. 183–186.

[5] Marina Bosi, Karlheinz Brandenburg, Schuyler Quack-
enbush, Louis Fielder, Kenzo Akagiri, Hendrik Fuchs,
and Martin Dietz, “ISO/IEC MPEG-2 Advanced Audio
Coding,” Journal of the Audio Engineering Society, vol.
45, no. 10, pp. 789–814, Oct. 1997.

[6] Bernd Edler, Nicole Knölke, Jörn Ostermann, and
Armin Taghipour, “Combination of Different Percep-
tual Models with Different Audio Transform Coding
Schemes:Implementation and Evaluation,” Nov. 2010,
Audio Engineering Society.

[7] A. Taghipour, M. C. Jaikumar, and B. Edler, “A psy-
choacoustic model with Partial Spectral Flatness Mea-
sure for tonality estimation,” in 2014 22nd European
Signal Processing Conference (EUSIPCO), Sept. 2014,
pp. 646–650.

[8] J. D. Johnston, “Estimation of perceptual entropy using
noise masking criteria,” in ICASSP-88., International
Conference on Acoustics, Speech, and Signal Process-
ing, Apr. 1988, pp. 2524–2527 vol.5.

[9] B. Edler, “Codierung von Audiosignalen mit
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