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ABSTRACT

In order to efficiently transmit and store speech signals,
speech codecs create a minimally redundant representation of
the input signal which is then decoded at the receiver with the
best possible perceptual quality. In this work we demonstrate
that a neural network architecture based on VQ-VAE with a
WaveNet decoder can be used to perform very low bit-rate
speech coding with high reconstruction quality. A prosody-
transparent and speaker-independent model trained on the
LibriSpeech corpus coding audio at 1.6 kbps exhibits per-
ceptual quality which is around halfway between the MELP
codec at 2.4 kbps and AMR-WB codec at 23.05 kbps. In
addition, when training on high-quality recorded speech with
the test speaker included in the training set, a model cod-
ing speech at 1.6 kbps produces output of similar perceptual
quality to that generated by AMR-WB at 23.05 kbps.

Index Terms— Speech coding, low bit-rate, generative
models, WaveNet, VQ-VAE

1. INTRODUCTION AND RELATED WORK

Speech codecs typically employ a carefully hand-engineered
pipeline made up of an encoder and a decoder which take
into account the physics of speech production to remove re-
dundancies in the data and yield a compact bitstream. High
quality speech codecs typically operate at bit-rates over 16
kbps. Recent advances in the field of deep learning, specifi-
cally autoencoder networks which directly learn the mapping
of inputs to outputs by means of an encoder-decoder frame-
work with an information bottleneck in between, open up the
possibility of learning both the encoder and the decoder di-
rectly from speech data. These models are able to learn the
redundancies in signals directly by being exposed to many ex-
amples during training, and have been successfully applied in
the domain of image compression [1–4]. In the speech do-
main, end-to-end coding operating at rates as low as 369 bps
by use of extracted acoustic features [5] and an end-to-end
optimized wideband codec performing on par with the adap-
tive multirate wideband (AMR-WB) codec at 9-24 kbps [6]
have both recently been proposed. Creating a minimally re-
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dundant representation of speech is inherently related to de-
termining the true information rate of the input signal. Kuyk
et al. [7] compute the true information rate of speech to be
less than 100 bps, yet current systems typically require a rate
roughly two orders of magnitude higher than this to produce
good quality speech, suggesting that there is significant room
for improvement in speech coding.

The WaveNet [8] text-to-speech model shows the power
of learning from raw data to generate speech. Kleijn et al. [9]
use a learned WaveNet decoder to produce audio comparable
in quality to that produced by the AMR-WB [10] codec at
23.05 kbps from the bit stream generated by the encoder in
Codec2 [11] (a parametric codec designed for low bit-rates)
operating at 2.4 kbps; this demonstrates the effectiveness of
a learned decoder over a hand-engineered one. Furthermore,
van den Oord et al. [12] demonstrate a learned autoencoder
– the vector-quantized variational autoencoder (VQ-VAE) –
which is able to encode speech into a compact discrete latent
representation and then reconstruct the original audio with
high quality by sampling from a WaveNet-like decoder.

In this paper, we evaluate the VQ-VAE architecture intro-
duced in [12] as an end-to-end learned speech codec, show-
ing that it can yield high reconstruction quality while passing
speech through a compact latent representation corresponding
to very low bit-rates for coding. We propose and evaluate var-
ious modifications to the VQ-VAE / WaveNet architecture as
described in [12] in order to make it more suited to the task of
speech coding. We create a speaker-independent model which
can accurately reproduce both the content and the prosody of
the input utterance while passing through a compact latent
representation that leads to lower bit rates and higher recon-
struction quality than the current state-of-the-art.

The VQ-VAE combines a variational autoencoder (VAE)
[13] with a vector quantization (VQ) layer to produce a dis-
crete latent representation which has been shown to capture
important high-level features in image, audio and video data,
yielding an extremely compact and semantically meaningful
representation of the input. The prior and posterior distribu-
tions are categorical, and samples drawn from these distri-
butions index an embedding which is passed as input to the
decoder network. Van den Oord et al. [12] demonstrate the
use of VQ-VAE in the audio domain, using a convolutional
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encoder and a WaveNet decoder on speech. The authors use
the VQ-VAE model to generate very high-quality speech even
when using a latent representation that is 64 times smaller
than the original input waveform, reducing 16-bit pulse-code
modulation (PCM) encoded speech at 16 kHz sample rate
(256 kbps) to a stream of discrete latent codes at 4 kbps. In
this case, the network learns to represent the high-level se-
mantic content of the speech, therefore when a speech wave-
form is passed through the autoencoder network, the recon-
struction contains the same syllabic content, but the prosody
of the utterance may be significantly altered. Further anal-
ysis of the representation learned by the network shows that
the discrete latent codes are well-correlated with the stream of
syllables in the input speech, suggesting that the encoder net-
work builds a high-level representation of the content of the
utterance, and then the decoder generates plausible-sounding
specific details. Given the very high quality of the recon-
structed audio, and the compact latent representation that the
network can produce, the VQ-VAE architecture seems to lend
itself naturally to the task of low bit-rate audio coding if it can
be generalized to preserve the identity of arbitrary speakers.

2. VQ-VAE BASED SPEECH CODEC

Given the ability of the VQ-VAE model to learn a high-level
abstract space invariant to low-level perturbations in the in-
put and which encodes only the contents of speech [12], our
main goal is to determine if the model can be used as an end-
to-end speech codec (i.e. map the input audio to the discrete
latent space learnt by VQ-VAE and then reconstruct the sig-
nal by sampling from the decoder of the network conditioned
on the latent representation). In order to be useful as a generic
speech codec, the model must be constrained to maintain both
the speaker identity and the prosody of the utterance at decod-
ing time. We present these architectural changes below.

2.1. Maintaining speaker identity

To encourage the model to be speaker-agnostic and generalize
across speakers it has never seen in the training set, we mod-
ify the original VQ-VAE architecture by removing explicit
conditioning on speaker identity, which was done through
a one-hot code passed to both the encoder and the decoder
both at training and synthesis time. In its place, we add a la-
tent representation (with an associated codebook) that takes
its input from the whole utterance and does not vary over
time. The time invariant code is generated by mean pool-
ing over the time dimension of the encoder output and fed
to a separate codebook. The expectation is that the network
will learn to use the time-varying set of codes to encode the
message content which varies over time, while summarising
and passing speaker-related information through the separate
non time-varying set of codes. In our experiments, the non
time-varying code is computed over the entire utterance at en-

coding time. In the experiments below, the codebooks were
of similar size to those used by the time-varying latents (eg.
256 elements), which led to a small additional coding over-
head of 1-2 bytes over the course of the utterance. Such a
long window would be unrealistic for online speech coding;
in this case the static code could be replaced with a code that
varies slowly over time and which is based only on past infor-
mation.

2.2. Constraining prosody

In order to constrain the model to pass prosodic as well as
semantic information through the bottleneck representation,
it is necessary to design a training regime in which the net-
work is encouraged, via a loss term, to pass pitch (f0) and
timing information through to the decoder. To this end, a sec-
ond decoder was added to the network in parallel with the
WaveNet audio decoder; the task of this network is to pre-
dict the f0 track of the training utterance, using a common
latent representation with the audio decoder. An additional
f0 prediction term with a tuneable weight is added to the loss
function, which causes the latent representation to pass pitch
track information through the bottleneck. This information is
then available to the waveform decoder network, which uses
it to produce an utterance that has the same pitch track as the
original. The f0 predictor model uses the same architecture
as the audio decoder, but only has to upsample the latent rep-
resentation to the rate of the f0 feature. When the trained
model is used as a codec, the f0 prediction network can be
removed from the model, and the audio decoder alone used to
reconstruct the waveform.

In our datasets f0 information had already been extracted
from the audio waveform using a standard pitch tracker, and
was sampled at 200 Hz. Given the 16 kHz sample rate of the
audio in the training set, we introduce an extra convolutional
layer with stride 5 on the encoder side for rate compatibility
between the audio samples and the f0 samples.

3. EXPERIMENTS

In the set of experiments below our goal is to determine un-
der which hyper-parameter settings VQ-VAE can be used as
a very low rate speech codec. Therefore, we focus on es-
tablishing how the quality of the reconstructed signal varies
as a function of the latent representation size of the model.
Changing the dimensionality of the latent representation is
equivalent to varying the bit-rate of the encoded signal. In the
original VQ-VAE setup the latents consist of one feature map
and the latent space is 512-dimensional. In our experiments
we vary in turn the number of encoder layers, the number of
latent maps, as well as the number of discrete codes per map.

Datasets We carry our experiments on two different
datasets. Most experiments rely on the LibriSpeech [14]
corpus (LS), which contains around 1,000 hours of read En-
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glish speech from a total of 2,302 speakers at a sample rate
of 16 kHz. For the majority of results presented in this pa-
per, the train-clean-100, train-clean-360 and
train-other-500 subsets of the corpus were combined
and used at training time. Evaluation samples were created
using the test-clean set. The set of speakers in the test
data is disjoint with those in the training data.

For cases when we evaluate models including test speak-
ers at training time, we held out 1/100 of the test-clean
dataset for evaluation, and add the remaining data (totalling
∼5 hours of extra audio) to the training set. We refer to this
dataset as the augmented LibriSpeech (LSplus) corpus. The
datasets were annotated with automatically extracted f0 in-
formation (presented as log(f0)), sampled at 200 Hz.

In addition to the datasets presented above, we also had
access to a proprietary corpus consisting of 10 American En-
glish speakers totalling approximately 300 hours of speech,
of which at least 85% was recorded in studio conditions. This
dataset, referred to as the Studio corpus, is used to investigate
performance in ideal training conditions.

Evaluation To assess the reconstructed speech samples in
a way that reflects informal listening impressions, we follow
Kleijn et al. [9] and use subjective MUSHRA-type listening
tests [15] to measure the perceived quality of the output from
lossy audio compression algorithms. In MUSHRA evalua-
tions the listener is presented with a labelled uncompressed
signal for reference, a set of numbered samples including the
test samples, a copy of the uncompressed reference, and a
low-quality anchor. We compress the anchor samples with
Speex [16] at 2.4kbps (below its comfortable range of use).

For some evaluations we also include other speech codecs
for comparison: Codec2 [11] at 2.4kbps, MELP [17] at
2.4kbps, AMR-WB [10] at 23.05kbps and the original signal
after companding and quantization using 8-bit µ-law [18]
(giving a bit-rate of 128kbps). µ-law is the companding
function used by the WaveNet decoder to map the 16-bit
sample resolution to an 8-bit softmax distribution, and so it
gives an upper bound on the quality of the reconstruction
from the VQ-VAE model. Each evaluation includes 8 utter-
ances, and each utterance is evaluated by 100 human raters.
The MUSHRA scale from 0-100 allows rating very small
differences between the samples.

3.1. Quality Evaluation

Initial experiments with the Studio dataset led to a choice
of hyperparameters that gave very good reconstruction qual-
ity for voices in that dataset. The number of encoder lay-
ers (each layer downsampling by a factor equal to the stride),
the number of latent maps (i.e. the number of separate code-
books) and the size of each codebook used were varied. We
ascertain that high-quality reconstruction of audio is possi-
ble with five strided convolutional encoder layers of stride 2
and one of stride 5 (leading to a total downsampling factor of
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Fig. 1. MUSHRA score vs bit-rate for the VQ-VAE speech
codec at 1.6 kbps, trained on Studio data and evaluated on a
single studio-recorded voice present in the train set, against
a variety of other codecs. Bit rate reduces from left to right,
with the optimum performance for a codec suggested in [7]
being in the top right corner of the graph.

25 ∗ 5 = 160 - a feature rate of 100 Hz), two latent maps each
with a 256-element codebook (each map is representable by
an 8-bit value), coding a 64-dimensional latent vector. This
leads to a bit rate of 1600 bps. This model is evaluated in a
MUSHRA test against a range of other codecs, and the results
are presented in Figure 1.

In the plot we notice the emergence of two clusters of high
and low reconstruction quality: i) the low quality cluster in-
cludes Speex, Codec2 and MELP operating at 2.4kbps, and ii)
the high quality cluster consists of AMR-WB at 23.05kbps, 8
bit µ-law and VQ-VAE at 1.6kbps. In these conditions, us-
ing speech from a speaker contained in the training set and
trained on studio-quality utterances, the VQ-VAE model is
very effective at coding the audio, achieving a factor of 14
improvement in compression rate over a standard wideband
audio codec for a minimal reduction in perceptual quality.

While this is an interesting result, it does not make for a
fully robust codec system, since the test speaker was present
in the training set, and the train and test audio were both of
very high quality. In order to evaluate the performance of the
model in more natural conditions, we then switched to using
the LibriSpeech corpus instead of the Studio corpus, which
also has the benefit of containing many more speakers and a
variety of different noise conditions.

In Figure 2 we present results for a set of models trained
on the full LibriSpeech dataset. The 1600 bps model uses the
same architecture parameters as the model trained on Studio
data above, while the 800 bps and 400 bps models each add
one further encoder layer with a stride of 2, which halves the
bit rate of the model. Here we see that the model at 1600
bps is lower in perceptual quality than previously, but still

737



102103104105106

Bit Rate (bps) - log scale

0

10

20

30

40

50

60

70

80

90

100
M

U
S

H
R

A
 s

co
re

Uncompressed
AMR-WB
23050 bps

VQ-VAE
1600 bps

VQ-VAE
800 bps

MELP
2400 bps

Speex
2400bps

VQ-VAE
400 bps

Fig. 2. MUSHRA score vs bit-rate for the VQ-VAE speech
codec, trained on LibriSpeech data and evaluated on voices
from the LibriSpeech test set, against various other codecs.

roughly halfway between MELP at 2400 bps and AMR-WB
at 23.05 kbps. Even at 800 bps, the VQ-VAE model outper-
forms MELP at 3 times the bitrate, and it is only at 400 bps
that performance degrades below that of Speex at 2400 bps.

Finally, we investigate the effect of including utterances
from the test speaker in the train set, to determine how much
benefit the model can gain from training on a specific speaker.
These results are presented in Figure 3, in which we observe
a small advantage in the perceptual quality for the VQ-VAE
model when training on utterances from test speakers.

3.2. Speaker Transparency

We follow Jia et al. [19] and Chen et al. [20] who assess
speaker similarity using mean opinion score (MOS) evalua-
tions based on subjective listening tests. MOS evaluations
[21] map ratings from bad to excellent into the range 1-5 with
0.5 point increments. To measure how similar synthesized
speech is to real speech of the target speaker, each synthesized
utterance is paired with a randomly selected ground truth ut-
terance from the same speaker. Raters are explicitly asked
throughout the study to not judge the content, grammar or
the audio quality of the sentences, but instead to focus on the
similarity of speakers to one another. Eight pairs of utterances
from the LibriSpeech test set were rated by 20 listeners each.

MOS scores for speaker similarity are presented in Table 1
for versions of the VQ-VAE codec at 1.6 kbps trained on the
LibriSpeech dataset and the augmented LibriSpeech dataset
(LSplus, meaning that the test speakers were in the train set),
and for comparison MELP at 2.4 kbps and Speex at 2.4 kbps.

We see that the speaker similarity MOS for the VQ-
VAE based codec is higher than for the other two low-bitrate
codecs, and is slightly higher for the case where the test
speakers are included in the train set. The wider error bounds
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Fig. 3. MUSHRA results for the VQ-VAE speech codec at
1.6 kbps, trained on Studio data, on LibriSpeech and on Lib-
riSpeech plus test set speakers and evaluated on voices from
the LibriSpeech test set.

Codec Speaker Similarity MOS
VQ-VAE LSplus 1600 bps 3.794± 0.451

VQ-VAE LS 1600 bps 3.703± 0.716
MELP 2400 bps 3.138± 0.324
Speex 2400 bps 2.534± 0.233

Table 1. MOS results for the VQ-VAE speech codec at 1600
bps trained on LibriSpeech with and without the test voices in
the train set, Speex at 2400 bps and MELP at 2400 bps.

on the result for the VQ-VAE codec trained on LibriSpeech
alone are at least in part due to a very low MOS, of 1.85,
being assigned to one of the speakers in the evaluation (the
next lowest scoring utterance has a speaker similarity MOS
of 3.38); the MOS for this speaker is significantly higher, at
2.73, when the test speaker is included in the train set.

4. CONCLUSION

In this work we demonstrate initial results showing the suit-
ability of the VQ-VAE model as a robust very low bit-rate
speech codec. After adjusting the architecture to make it
speaker and prosody transparent, we show that VQ-VAE
at 1600 bps outperforms some popular low bit-rate speech
codecs operating at 2400 bps. Listening test results demon-
strate that the VQ-VAE based codec is somewhat better at
preserving speaker identity than other low-rate codecs, but
more work is required to understand the variability in preser-
vation of speaker identity. Additionally we expect that model
performance can be improved beyond the current 1600 bps.
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[2] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli,
“End-to-end optimized image compression,” CoRR, vol.
abs/1611.01704, 2016.

[3] Eirikur Agustsson, Fabian Mentzer, Michael Tschan-
nen, Lukas Cavigelli, Radu Timofte, Luca Benini, and
Luc Van Gool, “Soft-to-hard vector quantization for
end-to-end learned compression of images and neural
networks,” CoRR, vol. abs/1704.00648, 2017.

[4] Oren Rippel and Lubomir Bourdev, “Real-time adaptive
image compression,” arXiv preprint arXiv:1705.05823,
2017.

[5] Milos Cernak, Alexandros Lazaridis, Afsaneh Asaei,
Philip N Garner, Milos Cernak, Alexandros Lazaridis,
Afsaneh Asaei, and Philip N Garner, “Composition
of deep and spiking neural networks for very low bit
rate speech coding,” IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 24, no.
12, pp. 2301–2312, 2016.

[6] Srihari Kankanahalli, “End-to-end optimized speech
coding with deep neural networks,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 2521–2525.

[7] Steven Van Kuyk, W Bastiaan Kleijn, and Richard C
Hendriks, “On the information rate of speech com-
munication,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2017 IEEE International Conference on.
IEEE, 2017, pp. 5625–5629.

[8] Aäron Van Den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu, “Wavenet: A generative model for raw
audio.,” in SSW, 2016, p. 125.

[9] W Bastiaan Kleijn, Felicia SC Lim, Alejandro Luebs,
Jan Skoglund, Florian Stimberg, Quan Wang, and
Thomas C Walters, “Wavenet based low rate speech
coding,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 676–680.

[10] Bruno Bessette, Redwan Salami, Roch Lefebvre, Mi-
lan Jelinek, Jani Rotola-Pukkila, Janne Vainio, Hannu
Mikkola, and Kari Jarvinen, “The adaptive multirate

wideband speech codec (AMR-WB),” IEEE transac-
tions on speech and audio processing, vol. 10, no. 8, pp.
620–636, 2002.

[11] D Rowe, “Codec 2-open source speech coding at 2400
bit/s and below,” Tech. Rep., 2011.
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