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ABSTRACT
Most of the determined blind source separation (BSS) algorithms
related to the independent component analysis (ICA) were derived
from mathematical models of source signals. However, such deriva-
tion restricts the application of algorithms to explicitly definable
source models, i.e., an implicit model associated with some signal-
processing procedure cannot be utilized within such framework. In
this paper, we propose an extension of the existing algorithm so that
any time-frequency masking method (e.g., those developed in speech
enhancement literature) can be incorporated into the determined BSS
algorithm. As an application of the proposed algorithm, a sparse ex-
tension of the well-known independent vector analysis (IVA) is also
proposed for illustrating the potentiality of the masking-based im-
plicit source model.

Index Terms— Linear source separation, demixing filter esti-
mation, primal-dual splitting, proximity operator, plug-and-play.

1. INTRODUCTION

Blind source separation (BSS) is methodology for recovering source
signals from multiple mixtures without any knowledge about the
mixing system. Let a convolutive mixing process of audio signals
be approximated in time-frequency domain as

x[t, f ] ≈ A[f ]s[t, f ], (1)

where x = [x1, x2, . . . xM ]T is an observation obtained by M mi-
crophones, s = [s1, s2, . . . sN ]T is a source signal to be recovered,
A[f ] is anM×N mixing matrix, and t and f are indices of time and
frequency, respectively. Then, the aim of BSS is to recoverN source
signals s from the mixtures x. In a determined or overdetermined
situation (M ≥ N ), many of the BSS problems are formulated as
an estimation problem of finding an N ×M demixing matrix W [f ]
which is a left inverse of A[f ] (i.e., W [f ]A[f ] = I), and the source
signals are recovered by simple multiplication:

W [f ]x[t, f ] ≈W [f ]A[f ]s[t, f ] = s[t, f ]. (2)

For the sake of simplicity, only a determined situation (M =N ) is
considered in this paper.

For estimating a demixing matrix W [f ], statistical indepen-
dence between source signals is often assumed, which leads to a
family of independence-based BSS algorithms. Arguably, the in-
dependent component analysis (ICA) applied in frequency domain
(FDICA) [1–3] is one of the most famous methods among them.
Some recent developments on this line aim to avoid the so-called
permutation problem [4, 5] by considering more sophisticated mod-
els of source signals. For instance, the independent vector analysis
(IVA) [6–8] assumes co-occurrence among the frequency compo-
nents in each source, and the independent low-rank matrix analysis
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(ILRMA) [9–11] assumes low-rankness on spectrogram of each
source. These models equipped with the recent algorithms based
on the majorization-minimization (MM) principle [8, 11] are often
considered as the current state-of-the-art methods.

The key to success of these methods is to incorporate prior
knowledge on source signals into their formulations. However,
the state-of-the-art MM algorithms may require time for deriving a
correct majorizing function tailored for each source model, which
delays the trial of a new source model. As an alternative for seeking
and developing a better model, a flexible algorithm for determined
BSS, based on a proximal splitting method [12–15], has been pro-
posed recently [16] to handle a lot of source models with less effort.
It seemed promising since some new models difficult for MM al-
gorithms were shown to be effective [16]. Yet, the algorithm has a
fundamental limitation which may prevent a practical use.

To resolve the limitation and widen the application of the BSS
algorithm in [16], its heuristic extension is proposed in this paper.
The fundamental limitation of the algorithm is its requirement of
the proximity operator corresponding to the source model (see Sec-
tion 2.2). As a proximity operator is an optimization problem, ap-
plication of the algorithm is limited to the class of source models
whose proximity operators can be easily calculated. To weaken this
requirement, a time-frequency masking operator is heuristically sub-
stituted in place of the proximity operator. As an application of the
proposed algorithm, a new BSS model, named sparse IVA, is also
proposed to demonstrate the potentiality of the proposed extension.

2. PROXIMAL ALGORITHM FOR DETERMINED BSS

In this section, the proximal algorithm proposed in [16] for the
independence-based determined BSS problems is briefly reviewed.

2.1. Independence-based BSS problems
As introduced in the previous section, the aim of determined BSS
methods is to estimate M ×M demixing matrices {W [f ]}Ff=1 so
that the source signals are approximately recovered from the obser-
vations as W [f ]x[t, f ] ≈ s[t, f ]. By assuming statistical indepen-
dence between the source signals, many of the BSS methods have
been formulated as a minimization problem of the following form:

Minimize
{W [f ]}F

f=1

P(W [f ]x[t, f ]) −
F∑
f=1

log |det(W [f ])|, (3)

where P is a real-valued penalty function corresponding to the
source model. For example, with some constant C, the traditional
FDICA, whose source model is the Laplace distribution, is given by

P(y[t, f ]) = C ‖y[t, f ]‖1 = C
M∑
m=1

T∑
t=1

F∑
f=1

|ym[t, f ]| , (4)
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while IVA based on the spherical Laplace distribution is obtained by

P(y[t, f ]) = C ‖y[t, f ]‖2,1 = C

M∑
m=1

T∑
t=1

( F∑
f=1

|ym[t, f ]|2
)1

2

. (5)

ILRMA can also be interpreted as Eq. (3) in the similar way [16].
From this perspective, it is clear that the difference of performance
among these methods is owing to goodness of the penalty function
P . Therefore, a BSS method can be improved by finding a better
penalty function P corresponding to a good source model.

2.2. Proximal algorithm for determined BSS problems [16]

As a new BSS method is developed by seeking a better model, it is
convenient to have a single algorithm that can handle a lot of models
without effort on modifying the code. In [16], the primal-dual split-
ting (PDS) algorithm [14] was employed to meet this requirement.

By reformulating Eq. (3) into a PDS applicable form,

Minimize
w

I(w) + P(Xw), (6)

the proximal algorithm in [16] is obtained as in Algorithm 1, where

w = [w[1]T ,w[2]T , . . . ,w[F ]T ]T ,
(
w[f ] = V(W [f ])

)
(7)

is a vectorized version of the demixing matrices {W [f ]}Ff=1, V is
the vectorizing operator converting a matrix into a vector,

V(W [f ])=[W1,1[f ], . . . ,W1,M [f ],W2,1[f ], . . . ,WM,M [f ]]T, (8)

M is the linear operator converting the vector back into the matrix,

M(w)[f ] = W [f ], (9)

X is a matrix constructed from the observed data x[t, f ] as

X = blkdiag(χ[1],χ[2], . . . ,χ[F ]), (10)

χ[f ] = blkdiag(χ[f ], χ[f ], . . . , χ[f ]), (M times) (11)

χ[f ] = [τ1[f ], τ2[f ], . . . , τM [f ]], (12)

τm[f ] = [xm[1, f ], xm[2, f ], . . . , xm[T, f ]]T , (13)

blkdiag(·) is an operator constructing a block-diagonal matrix by
concatenating inputted matrices diagonally, τm[f ] is T ×1, χ[f ] is
T×M , χ[f ] is MT×M2, X is FMT×FM2,

I(w) = −
F∑
f=1

M∑
m=1

log σm(M(w)[f ]), (14)

and σm(W ) is the mth singular value of W . The step-size parame-
ters can be chosen simply as µ1 = µ2 = α= 1 through the normal-
ization rule (see [16] for details and an extension).

The important feature of this algorithm is that each function in
the problem is independently minimized via the proximity operator,

proxµg[z] = arg min
ξ

[
g(ξ) +

1

2µ
‖z− ξ‖22

]
, (15)

which is a subproblem easier than the original problem [13]. Prox-
imity operators of some functions related to the BSS problems, in-
cluding − log in Eq. (3) and norms in Eqs. (4) and (5), can be com-
puted quite efficiently. Therefore, Algorithm 1 is promising because
difficulty of the BSS problem only depends on the subproblem of

Algorithm 1 PDS-BSS [16]

1: Input: X , w[1], y[1], µ1, µ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxµ1I [ w[k] − µ1µ2X

Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])

6: ỹ = z− prox 1
µ2
P [ z ]

7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for

the source model, and a new algorithm is obtained for each source
model by only replacing the proximity operator in the 6th line.

Although proximity operators divide the problem into simpler
subproblems, they are still optimization problems whose solutions
may not be obtained easily. That is, Algorithm 1 is limited to the
class of source models whose proximity operators are easily com-
putable. Moreover, for deriving a solution to the proximity operator,
the penalty function of the source model must be written explicitly,
which prohibits a use of implicit source models learned from data.

3. PROPOSED METHOD

To overcome the limitation and widen the application of Algo-
rithm 1, the proximity operator is heuristically replaced by a time-
frequency masking operator. To do so, the connection between the
proximity operator and time-frequency masking is discussed first.

3.1. Proximity operators as time-frequency masking

Some source models admit closed-form solutions to the associated
proximity operators. For example, the proximity operator of `1 norm
in Eq. (4) is given by the bin-wise soft-thresholding operator,

(
proxλ‖·‖1[z]

)
m

[t, f ] =

(
1− λ

|zm[t, f ]|

)
+

zm[t, f ], (16)

where (·)+ = max{0, ·} is the projection onto nonnegative values,
and λ ≥ 0. That of `2,1 mixed norm in Eq. (5) is also given as

(
proxλ‖·‖2,1[z]

)
m

[t,f ] =

(
1− λ

(
∑F
f=1|zm[t,f ]|2)

1
2

)
+

zm[t,f ], (17)

which is called the group-thresholding operator. By inserting one
of these operators into the 6th line, Algorithm 1 for FDICA or IVA
is obtained. Proximity operators of many other sparsity-inducing
functions can also be obtained as thresholding operators [17, 18].

Note that the above proximity operators have the same form:(
Tλ[z]

)
m

[t, f ] =
(
M(z)

)
m

[t, f ] zm[t, f ], (18)

where 0 ≤ (M(z))m[t, f ] ≤ 1 is a scalar depending on the input,
and the soft- and group-thresholding operators in Eqs. (16) and (17)
are obtained by inserting the following functions into Eq. (18):(

Mλ
`1(z)

)
m

[t, f ] =
(
1− λ/|zm[t, f ]|

)
+
, (19)(

Mλ
`2,1(z)

)
m

[t, f ] =
(
1− λ/(

∑F
f=1|zm[t, f ]|2)

1
2
)
+
. (20)

This form can be interpreted as the time-frequency masking whose
maskM(z) is given by a procedure depending on its input.
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3.2. Proximity operator as MAP estimation

The optimization problem of the proximity operator in Eq. (15)
can be interpreted as the maximum a posteriori (MAP) estimation.
When an observed signal is contaminated by the additive Gaussian
noise, MAP estimation of the clean signal, whose prior distribution
is C exp(−P(·)), reduces to the following maximization problem:

proxµP [z] = arg max
ξ

[
e
− 1

2µ
‖z−ξ‖22 e−P(ξ)

]
, (21)

which is equivalent to the proximity operator (taking negative log-
arithm of Eq. (21) recovers Eq. (15)). This interpretation suggests
that substituting a general Gaussian denoiser, which (approximately)
solves Eq. (21), in place of the proximity operator results in an al-
gorithm which works as if the penalty function P is minimized.
Such idea of replacing a proximity operator is called plug-and-play
method [19] which is attracting many researchers recently [20–23].

3.3. Proposed algorithm

Based on the above relations, the proximity operator in Algorithm 1
is replaced by a time-frequency mask as in Algorithm 2, where� de-
notes the element-wise product, and θ represents a set of parameters
for generating the mask. This slight generalization allows collabora-
tion of time-frequency masking and the determined BSS algorithm.
It greatly extends the possibility because explicit form of the penalty
function P is not required, i.e., any mask (maybe defined as a rule
and/or learned from data) can be incorporated into the algorithm.

When the underlying penalty function is separable for each
source as in Section 2.1 (P =

∑N
n=1Pn), then the proposed al-

gorithm can be seen as an independence-based BSS method (ML
estimation) with C exp(−Pn(·)) being the density function of nth
source signal. That is, the proposed algorithm recasts the BSS prob-
lem in Eq. (3) into the denoising problem in Eq. (21) consisting of
the same prior distribution of the sources. This is important property
because learning a Gaussian denoiser is much easier than learning
a regressor of the demixing matrix which requires a variety of im-
pulse responses as the training data. It is also possible to obtain an
algorithm beyond the independence-based framework by inserting a
masking method which is not separable for each source.

In practice, one can insert any time-frequency mask into Algo-
rithm 2 to generate a new BSS algorithm. Although stability and
convergence of the algorithm for a general time-frequency mask can
only be investigated by experiments, it is easy since the only effort
for rewriting the code is the masking function in the 6th line of Al-
gorithm 2. That is, one can just insert a masking method into the
algorithm and run it for checking the performance.

4. SPARSE IVA:
SIMPLE YET POWERFUL EXTENSION OF IVA

As an application of the proposed algorithm, a computationally
cheap but well-performing extension of IVA, named Sparse IVA,
is proposed here. Although it might seem more natural to consider
a recent learning-based masking method (such as ones using deep
neural networks) from the above discussion, our motivation is to
show that there is still a room for improving the well-known model
for which the proposed concept is essential.

4.1. Side effect of whitening undesirable for IVA

As for many other algorithms, whitening is strongly recommended
before running the algorithm. However, it causes a side effect which

Algorithm 2 PDS-BSS-masking

1: Input: X , w[1], y[1], µ1, µ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxµ1I [ w[k] − µ1µ2X

Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])

6: ỹ = z−Mθ(z)� z

7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for
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Fig. 1. Illustration of the undesired side effect of whitening. Time-
frame-wise energies of each spectrogram are shown below.

degrades the performance of IVA. Since the frequency-wise energy
of the observed data is set to the same value for every frequencies,
whitening distorts the assumption of IVA, co-occurrence among the
frequency components, which prevent IVA from working properly.

To see this effect, Fig. 1 illustrates an example of spectrograms
before and after whitening. As seen in the figure, the original speech
mixture does not contain very low- and high-frequency components,
say, below 100 Hz and above 6 kHz, respectively. These low- and
high-frequency bands, which are dominated by ambient noise, are
also normalized to have the same energy as other bands. Such noise
magnification distorts the group sparse nature of speech signals, and
therefore the performance of IVA is degraded. The group sparse
structure should be recovered without harming the positive effect of
whitening such as improvement on convergence speed.

4.2. Proposed Sparse IVA

By adding `1 norm to `2,1 mixed norm, a new BSS model, namely a
sparsely regularized IVA, can be derived. By just inserting [24]

proxλ1‖·‖2,1+λ2‖·‖1
[z] = proxλ1‖·‖2,1

[ proxλ2‖·‖1
[z] ] (22)

to the 6th line of Algorithm 1, the algorithm for such sparse variant
of IVA is obtained [16]. Starting from this composite thresholder,
the proposed Sparse IVA is defined through a time-frequency mask.

Firstly, for recovering the group sparse structure distorted by
whitening, a frequency-wise weight (Θη[x])f ≥ 0 is proposed based
on sparseness of each frequency band measured by the normalized
`1 norm. As `1 norm takes a small value for a sparse signal, we con-
sider the reciprocal of the normalized `1 norm [25] for the weight:

Θη[x] = Υη

[( M∑
m=1

T∑
t=1

|xm[t, f ]|2
)1

2/( M∑
m=1

T∑
t=1

|xm[t, f ]|
)]
,

(23)
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where Υη[ · ] denotes `1 normalization with clipping by η ≥ 0,

Υη[ξ] = ξη/(‖ξη‖1/F ), ξη = (ξ − η)+ , (24)

and division in Eq. (23) is performed element-wise. The f th ele-
ment (Θη[x])f is larger when the corresponding frequency band is
sparser, and vice versa. Clipping by η enforces elements less than η
to zero for further suppressing the effect of noisy frequency bands.

Furthermore, enhanced thresholders are employed to reduce
the bias imposed by the soft- and group-thresholding. While these
thresholding functions in Section 3.1 were obtained from the penalty
functions, it is possible to define a thresholder without defining the
associated penalty function. Some recent research considers this
way to realize a better thresholding function [26–30]. For example,
the thresholding rule obtained through the p-shrinkage [27],(
Tp,λ[z]

)
m

[t, f ] =
(
1− λ2−p/|zm[t, f ]|2−p

)
+
zm[t, f ], (25)

is related to a penalty function which does not have an explicit
formula for general p. Nevertheless, it behaves as a reasonable
thresholding function since p = 1 results in the soft-thresholding
in Eq. (16), and p → −∞ corresponds to the hard-thresholding.
Another example is one of the social sparsity operators [26],(
Th,λ[z]

)
m

[t, f ] =
(
1− λ/

√
h ∗ |zm[t, f ]|2

)
+
zm[t, f ], (26)

where h∗ represents convolution with a two-dimensional filter kernel
h in time-frequency domain. Although Eq. (26) is not a proximity
operator in general, its effectiveness is empirically known as in [26].
In this paper, the firm thresholder [31, 32] is utilized for simplicity.

Then, by imposing the frequency-wise weight Θη[x] and the
debiasing operator Ξκ[·] corresponding to the firm thresholder into
Eq. (22), the time-frequency mask for Sparse IVA is proposed:(
Mx,η,λ,κ

SparseIVA(z)
)
m

[t, f ] = (27)

Ξκ

[(
1− λ1

(
∑F
f=1(Θη[x])f |ζz,κm [t, f ] zm[t, f ]|2)

1
2

)
+

]
ζz,κm [t, f ],

where (Θη[x])f ≥ 0 is the f th element of Θη[x] in Eq. (23), η ≥ 0
is the clipping parameter in Eq. (24), λ = [λ1, λ2] is the thresholds,(

Ξκ[z]
)
m

[t, f ] =
(
κ zm[t, f ]/maxm,t,f{zm[t, f ]}

)
− (28)

is a debiasing operator with a magnification factor κ ≥ 1, (·)− =

min{1, ·} is a clipping operator so that
(
(z)+

)
−∈ [0, 1], and

ζz,κm [t, f ] = Ξκ
[(

1− λ2/|zm[t, f ]|
)
+

]
(29)

is an element-wise mask corresponding to the firm thresholding
whose threshold varies depending on the maximum value of the
input. This mask can be regarded as a weighted and non-convex
version of the thresholding function in Eq. (22) which is recovered
by κ = maxm,t,f{zm[t, f ]} and (Θη[x])f = 1 (for all f ).

By inserting this time-frequency mask into Algorithm 2, the BSS
algorithm for Sparse IVA is obtained. Although it might seem com-
plicated, calculation of the proposed mask is not so expensive than
that of the ordinary Laplace IVA in Eq. (20) since the computational
cost of this algorithm is dominated by the 4th and 5th lines involving
the (demix) filtering. Note that the proposed algorithm is essential
for Sparse IVA because it is defined only by the mask-generating
operator and its penalty function is not explicit.
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Fig. 2. Comparison between the ordinary IVA based on Eq. (20)
(dotted lines) and the proposed Sparse IVA in Eq. (27) (solid lines).

Table 1. Scores at the last iteration of Fig. 2. Run time per iteration
was measured by Core i5-7200U processor and MATLAB 2017a.

Mixture A Mixture B Run time
SDR SIR SAR SDR SIR SAR [ ms / iter. ]

IVA 6.0 9.8 8.7 3.4 6.3 7.5 55.2
Sparse IVA 9.5 14.9 11.3 6.5 9.8 9.7 67.1

Difference 3.5 5.1 2.6 3.1 3.5 2.2 11.9
Ratio 1.6 x 1.5 x 1.3 x 1.9 x 1.6 x 1.3 x 1.2 x

5. EXPERIMENT

The proposed Sparse IVA was tested by applying it to speech mix-
tures as in [16]. The database used in this experiment was a part
of SiSEC (dev1 in the UND task1). Live recording (liverec)
of four female speech sources recorded by two microphones (5 cm
spacing) was chosen as the test data. For making the problem de-
termined, two pairs of sources were considered: Mixture A consists
of two sources arrived from −50◦ and 45◦ and Mixture B consists
of two sources arrived from −10◦ and 15◦, where 0◦ corresponds
to the normal direction to the microphone array. The reverberation
time was 130 ms, and 128-ms-long Hann window with 64-ms shift
was used. The initial value of demixing matrices w[1] was set to the
identity matrices (W [f ] = I for all f ), and that of y was the zero
vector. The parameters for Sparse IVA were set to µ1 = 1, µ2 = 1,
α= 1.75, λ1 = 2, λ2 = 0.01, κ = 1.1, and η = 0.5. For compari-
son, the ordinary Laplace IVA based on Eq. (20) was also performed
by the proposed algorithm with the same parameters.

The experimental results are shown in Fig. 2 whose scores at the
last iteration are listed in Table 1. While the proposed Sparse IVA
involved the computational load similar to the ordinary IVA, their
scores greatly differ as in the table (SDR improved 3.3 dB in aver-
age by only requiring 1.2 x computational efforts). This result indi-
cates that a better BSS algorithm can be obtained with the proposed
method by simply designing a mask-generation rule based on a prior
knowledge which can be borrowed from existing methods [33–35].

6. CONCLUSIONS

In this paper, a general BSS algorithm which can be easily defined by
a time-frequency masking rule was proposed. The proposed method
can easily unify a sound enhancement method into determined BSS
by simply inserting a mask-generating function into the single line
of the algorithm. Its extraordinary flexibility opened up a new fron-
tier of determined BSS since any denoising method based on time-
frequency masking can be combined into the BSS algorithm, which
was demonstrated through the proposed Sparse IVA.

1Available at http://sisec2011.wiki.irisa.fr

718



7. REFERENCES

[1] P. Smaragdis, “Blind separation of convolved mixtures in the
frequency domain,” Neurocomputing, vol. 22, no. 1, pp. 21–34,
1998.

[2] H. Buchner, R. Aichner, and W. Kellermann, “A generalization
of blind source separation algorithms for convolutive mixtures
based on second-order statistics,” IEEE Trans. Speech Audio
Process., vol. 13, no. 1, pp. 120–134, Jan. 2005.

[3] H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and
K. Shikano, “Blind source separation based on a fast-
convergence algorithm combining ICA and beamforming,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 2, pp.
666–678, Mar. 2006.

[4] N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind
source separation based on temporal structure of speech sig-
nals,” Neurocomputing, vol. 41, no. 1, pp. 1–24, 2001.

[5] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A ro-
bust and precise method for solving the permutation problem
of frequency-domain blind source separation,” IEEE Trans.
Speech Audio Process., vol. 12, no. 5, pp. 530–538, Sep. 2004.

[6] A. Hiroe, “Solution of permutation problem in frequency do-
main ICA, using multivariate probability density functions,” in
Proc. ICA, 2006, pp. 601–608.

[7] T. Kim, H. T. Attias, S. Y. Lee, and T. W. Lee, “Blind source
separation exploiting higher-order frequency dependencies,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 1, pp.
70–79, Jan. 2007.

[8] N. Ono, “Stable and fast update rules for independent vector
analysis based on auxiliary function technique,” in Proc. IEEE
Workshop Appl. Signal Process. Audio Acoust., Oct. 2011, pp.
189–192.

[9] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, “Efficient multichannel nonnegative matrix fac-
torization exploiting rank-1 spatial model,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., Apr. 2015, pp. 276–280.

[10] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, “Relaxation of rank-1 spatial constraint in
overdetermined blind source separation,” in Proc. Eur. Signal
Process. Conf., Aug. 2015, pp. 1261–1265.

[11] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, “Determined blind source separation unifying
independent vector analysis and nonnegative matrix factoriza-
tion,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol.
24, no. 9, pp. 1626–1641, Sep. 2016.

[12] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods
in Signal Processing, pp. 185–212, Springer, 2011.

[13] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 127–239, 2014.

[14] N. Komodakis and J. C. Pesquet, “Playing with duality: An
overview of recent primal-dual approaches for solving large-
scale optimization problems,” IEEE Signal Process. Mag., vol.
32, no. 6, pp. 31–54, Nov. 2015.

[15] M. Burger, A. Sawatzky, and G. Steidl, First Order Algorithms
in Variational Image Processing, pp. 345–407, Springer, 2016.

[16] K. Yatabe and D. Kitamura, “Determined blind source separa-
tion via proximal splitting algorithm,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Apr. 2018, pp. 776–780.

[17] M. Kowalski, “Sparse regression using mixed norms,” Appl.
Comput. Harm. Anal., vol. 27, no. 3, pp. 303–324, 2009.

[18] T. Tachikawa, K. Yatabe, and Y. Oikawa, “Underdetermined
source separation with simultaneous DOA estimation without
initial value dependency,” in Proc. Int. Workshop Acoust. Sig-
nal Enhanc., Sep. 2018, pp. 161–165.

[19] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg,
“Plug-and-play priors for model based reconstruction,” in
IEEE Glob. Conf. Signal Inf. Process., Dec. 2013, pp. 945–
948.

[20] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play
ADMM for image restoration: Fixed-point convergence and
applications,” IEEE Trans. Comput. Imaging, vol. 3, no. 1, pp.
84–98, Mar. 2017.

[21] S. Ono, “Primal-dual plug-and-play image restoration,” IEEE
Signal Process. Lett., vol. 24, no. 8, pp. 1108–1112, Aug. 2017.

[22] U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-
play priors approach for solving nonlinear imaging inverse
problems,” IEEE Signal Process. Lett., vol. 24, no. 12, pp.
1872–1876, Dec. 2017.

[23] T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers,
“Learning proximal operators: Using denoising networks for
regularizing inverse imaging problems,” in IEEE Int. Conf.
Comput. Vis., Oct. 2017, pp. 1799–1808.

[24] A. Gramfort, D. Strohmeier, J. Haueisen, M.S. Hamalainen,
and M. Kowalski, “Time-frequency mixed-norm estimates:
Sparse M/EEG imaging with non-stationary source activa-
tions,” NeuroImage, vol. 70, pp. 410–422, 2013.

[25] P. O. Hoyer, “Non-negative matrix factorization with sparse-
ness constraints,” J. Mach. Learn. Res., vol. 5, pp. 1457–1469,
Dec. 2004.

[26] M. Kowalski, K. Siedenburg, and M. Dorfler, “Social sparsity!
Neighborhood systems enrich structured shrinkage operators,”
IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2498–2511,
May 2013.

[27] R. Chartrand, “Shrinkage mappings and their induced penalty
functions,” in IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2014, pp. 1026–1029.

[28] M. Kowalski, “Thresholding RULES and iterative shrink-
age/thresholding algorithm: A convergence study,” in IEEE
Int. Conf. Image Process., Oct. 2014, pp. 4151–4155.

[29] I. W. Selesnick and I. Bayram, “Sparse signal estimation by
maximally sparse convex optimization,” IEEE Trans. Signal
Process., vol. 62, no. 5, pp. 1078–1092, Mar. 2014.

[30] I. Bayram, “Penalty functions derived from monotone map-
pings,” IEEE Signal Process. Lett., vol. 22, no. 3, pp. 265–269,
Mar. 2015.

[31] H.-Y. Gao and A. G. Bruce, “Waveshrink with firm shrinkage,”
Statistica Sinica, vol. 7, no. 4, pp. 855–874, 1997.

[32] A. Antoniadis, “Wavelet methods in statistics: some recent
developments and their applications,” Statist. Surv., vol. 1, pp.
16–55, 2007.

[33] K. Yatabe and Y. Oikawa, “Phase corrected total variation for
audio signals,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Apr. 2018, pp. 656–660.

[34] Y. Masuyama, K. Yatabe, and Y. Oikawa, “Phase-aware har-
monic/percussive source separation via convex optimization,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May
2019.

[35] D. Takeuchi, K. Yatabe, Y. Koizumi, Y. Oikawa, and
N. Harada, “Data-driven design of perfect reconstruction fil-
terbank for DNN-based sound source enhancement,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., May 2019.

719


		2019-03-18T11:18:36-0500
	Preflight Ticket Signature




