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ABSTRACT

Time-frequency mask estimation with various clustering approaches
has proven effective in solving the audio source separation problem.
In this framework, the time-frequency bins of the mixture spectro-
gram are represented in a high-dimensional embedding space, where
various methods can be applied to group the embedded points to cal-
culate either hard or soft source assignments and subsequently the
time-frequency masks. However, the mismatch between the assign-
ment algorithm during the training and inference phases in majority
of the current approaches leads to a suboptimal solution, because
the assignment objective that is used during the training (e.g. ideal
binary mask) is not the same as the one used during the inference
phase (e.g. k-means clustering). We propose a method to reduce
the mismatch between these two conditions where the source em-
bedding is trained such that the source assignment during training
and inference phases results in similar outcomes. Our results show
that matching the source assignment during training- and inference-
phase results in more accurate and consistent mask estimation in the
inference phase which significantly improves the source separation
accuracy for various hard and soft clustering methods.

Index Terms— Source separation, clustering, mask estimation,
deep learning

1. INTRODUCTION

Time-frequency (T-F) masking has long been one of the most preva-
lent and successful approaches for source separation. Among var-
ious methods for estimating the T-F masks, clustering-based or
grouping-based approaches have proven their effectiveness and
potential under various circumstances [1, 2, 3, 4]. The general
framework for clustering-based approaches towards T-F masking
is to formulate the mask estimation as a classification problem,
where the source assignment labels or probabilities (hard or soft
masking) for the T-F bins in the mixture spectrogram represent the
corresponding T-F masks.

In recent years, deep learning-based clustering models have
greatly advanced the state-of-the-art of this problem [5, 6, 7, 8, 9,
10, 11, 12, 13]. Various neural network architectures and procedures
for embedding generation and cluster formulation have been pro-
posed for robust performance and good generalization. However,
an important issue for many clustering-based systems is that the
training- and inference-phase conditions are mismatched. This may
lead to unpredictable failure in inference phase even if the network
has been trained properly in the training phase. Moreover, with the
sensitivity of most clustering algorithms to their initialization, the
performance in inference phase is even harder to guarantee. Sev-
eral previous studies proposed different objective functions favored
by the type of clustering algorithm selected in the inference phase
[10], multi-stage learning frameworks [6, 7, 13] or explicit cluster

parameter initialization inside the network [9, 12] to alleviate the
mismatch, however they were either not straight-forward or greatly
increased the system complexity.

We propose a simple but effective method for bridging the per-
formance gap between the training- and inference-phases. The aim
for the method is to use the same computation in the training phase
as the one it was trained on. The key concept in the method is to
train the network such that the ideal binary mask (IBM) is a local
minimum of a selected hard clustering algorithm (e.g. K-means) on
the generated embeddings. With networks trained with this prop-
erty, hard T-F masks can be calculated by applying the selected hard
clustering algorithm in the inference phase. For soft mask estima-
tion tasks, an extra soft mask estimation objective can be added to
the network in a multi-task learning fashion, with the IBM used as
the initialization of the soft mask estimation procedures. In the in-
ference phase, the estimated hard mask is used as the initialization
for soft mask estimation. This is equivalent to train the embeddings
so that they simultaneously follow two probability distributions de-
fined by the hard and soft clustering algorithms respectively, while
the hard assignments serve as the cue for initialization in the soft
clustering branch. Experiments show that this simple method sig-
nificantly bridges the performance gap between the training- and
inference-phases on various hard and soft clustering algorithms.

The rest of the paper is organized as follows. Section 2 intro-
duces and analyzes the proposed method. Section 3 provides exper-
iment results and discussions. Section 4 concludes the paper.

2. MATCHING TRAINING- AND INFERENCE-PHASE
CONDITIONS FOR MASK ESTIMATION

2.1. Problem formulation

In clustering-based T-F masking methods with deep neural networks
for embedding generation, the mixture spectrogram X ∈ RT×F is
mapped to a D-dimensional embedding space

V = H(X) (1)

where V ∈ RD×TF are the embeddings for the T-F bins, and H(·)
is the mapping function defined by the neural network. The gen-
eral idea during training phase is that V should be clustered into
C classes, each representing an active source in the mixture. The
source assignment labels or probabilities W′ ∈ RC×TF are then
treated as the estimated T-F masks. Training objectives are typically
designed to favor a selected type of clustering algorithm, such that
W′ matches closely to the target T-F masks W ∈ RC×TF . For hard
clustering, ideal binary mask (IBM) B ∈ {0, 1}C×TF is typically
used as the target oracle mask [14], while for soft clustering various
other masks can be chosen [15].
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Fig. 1. Flowchart of the proposed training method for clustering-based T-F mask estimation. Embeddings V are generated from the mixture
spectrogram X through a neural network. For hard mask estimation, one iteration of a selected hard clustering algorithm is performed with
ideal binary masks B as the initialization. For soft mask estimation, the soft masks M′ is estimated with any soft clustering algorithm with
B as the initialization.

2.2. Ideal binary mask as a local minimum

Many widely-used clustering algorithms rely on iterative update
rules (e.g. Expectation-Maximization) to find a local minimum.
An important property for those iterative rules is their convergence
guarantee: the objective function (e.g. log-likelihood in EM) is
improved for every iteration, and the algorithm will converge after a
finite number of iterations. A typical convergence criteria is that the
difference between the source assignments generated from two con-
secutive iterations is smaller than a pre-defined threshold. In other
words, a source assignment Ŵ is a local minimum of the clustering
problem, if Ŵ′ is the source assignment after another iteration and
satisfies ||Ŵ′−Ŵ||2 < ε with ε ∈ R+ be the threshold. Motivated
by this, we can design an objective function such that IBM B is a
local minimum: when initializing a hard clustering algorithm with
B as the source assignments, it should still generate B as the source
assignments after one more iteration. Using L2-norm as objective,
the objective can be written as:

L = ||X� (B−B′)||22 (2)

where B′ is the generated source assignment and � represents
element-wise multiplication. This is equivalent to a traditional mask
approximation objective with IBM as target, but the difference here
is that the masks B′ is generated from a standard iteration of the
selected hard clustering algorithm. For EM-based hard clustering
algorithms such as K-means, it corresponds to the procedure that
an M-step is first applied to obtain the parameters of the clustering
model, and an E-step is followed to generate the new source as-
signments (i.e. masks). During inference phase, the selected hard
clustering algorithm can be directly applied until convergence.

One issue during training is that binarizing B′ as the output of
the M-steps might lead to harder gradient back-propagation, espe-
cially with the usage of the non-differentiable argmax or argmin
functions. To alleviate it, we perform a continuous relaxation on
B′ to allow proper gradient flow. As examples, we demonstrate how
the E-steps of K-means and spherical K-means can be relaxed. Other
types of hard clustering algorithms can be relaxed similarly.

2.2.1. Continuous relaxation for K-means

The E-step in standard K-means estimates the source assignment of
an embedding by choosing the closest cluster centroid:

rn,t,f = argmin {||vt,f − µi,n||2, i = 1, . . . , C} (3)

where rn,t,f ∈ RC×1 corresponds to the source assignment of T-F
bin {t, f} at n-th iteration, vt,f ∈ RD×1 is the embedding vector
of T-F bin {t, f}, and µi,n ∈ RD×1 is the i-th centroid at n-th iter-
ation. To replace the argmin function, we relax it with the squared
Euclidean distance between vt,f and all µi,n:

r̂n,t,f = {1−
||vt,f − µi,n||22∑C
i=1 ||vt,f − µi,n||22

, i = 1, . . . , C} (4)

2.2.2. Continuous relaxation for spherical K-means

Spherical K-means is designed for clustering embeddings on a unit
hypersphere [16]. The standard E-step applies the argmax function
on the dot product between the embeddings and the centers

pn,t,f = argmax {µTi,nv̄t,f , i = 1, . . . , C} (5)

where pn,t,f ∈ RC×1 and µi,n ∈ RD×1 correspond to the source
assignments of T-F bin {t, f} and the i-th cluster centers at n-th
iteration respectively, and V̄ ∈ RD×TF is the embedding matrix
normalized to unit L2-norm. We relax the argmax function with a
Softmax function

an,i,t,f =

{
1− arccos(µTi,nv̄t,f/π), if V ∈ R
1− 2 · arccos(µTi,nv̄t,f/π), if V ∈ R+ (6)

p̂n,i,t,f = eαan,i,t,f �
C∑
i=1

eαan,i,t,f (7)

where An,i ∈ R1×TF represents the angular similarity between
all the embeddings and the i-th center at iteration n, and � is the
element-wise division operation. α ∈ [1,+∞) is a scalar sharpen-
ing the output, which is similar to the gumbel-softmax function [17].
We empirically set α = 5 in all our experiments.
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2.2.3. Relaxation in multiple iterations

If more than one EM iteration is applied during training phase, only
the last E-step should have continuous output to guarantee an identi-
cal update rule with the inference phase. In order to properly propa-
gate the gradients in the intermediate steps where a binarized output
is required, a simple straight-through estimator [18] can be applied to
copy the gradient of the binarized source assignments to their con-
tinuous relaxations. Suppose Z ∈ RC×TF is the relaxed source
assignment matrix for an intermediate E-step of any hard clustering
algorithm, then the straight-through estimator can be defined as

ST (Z) : gradient copy([Z],Z) (8)

where [·] is the nearest integer function (i.e. rounding function), and
gradient copy copies the gradient received by [Z] directly to Z for
back-propagation. [Z] is used as the binary assignment matrix to
pass to the next M-step. However, stacking multiple iterations has
the risk that every two iterations might not be converging. For in-
stance, with two EM iterations in K-means and R1,2 ∈ RC×TF as
the corresponding source assignments, optimizing equation 2 with
R2 as the final output does not explicitly constrain convergence be-
tween the pairs (B, R1) and (R1, R2). In other words, IBM might
not be the local maximum since the steps from B to R1 and R1 to
R2 might not meet the convergence criteria. We will show in sec-
tion 3.3 that applying more than one iteration does not improve the
performance.

2.3. Multi-task learning for soft mask estimation

A multi-task learning framework can be designed for soft T-F mask
estimation. Similar to the hard mask estimation, we initialize the
soft clustering algorithm with the IBM B and run 1 iteration for
update. During inference time, the binary mask can be estimated
from the selected hard clustering algorithm, and then used as the
initialization for the soft clustering algorithm for 1 iteration. The
multi-task learning objective then becomes:

LMT =||X� (B−B′)||22 + ||X� (M−M′)||22 (9)

where M and M′ are the target and the estimated soft masks re-
spectively. This is equivalent to the assumption that when initialized
with IBM, the soft clustering algorithm will generate the target soft
mask after one iteration. Figure 1 shows the entire flowchart of the
method. Note that the soft clustering algorithm can be any mask esti-
mation module even without the constraint that the summation of the
assignments should be 1, which enables the system to estimate any
real-valued T-F masks [15] or directly perform magnitude spectrum
approximation (MSA) [19].

A natural question arises in the light of equation 2: can soft
clustering algorithm be designed in the same way such that a target
soft mask M is the local minimum? Under this assumption, the
objective function would simply be

L′ = ||X� (M−M′)||22 (10)

We argue that this assumption is too hard or even impossible to
achieve. Discretized masks have the advantage that they are more
robust to small fluctuations in the distance measurement between
the embeddings and the cluster centers. Continuous or soft masks,
however, are more sensitive to minor changes in the embedding po-
sitions. Equation 9 only holds the assumption that the soft clus-
tering algorithm will generate the target masks after 1 iteration, at
which the algorithm might not necessary to converge. This weaker

assumption gives much higher flexibility on the embedding positions
and leads to better generalization. In section 3.3 we will show that
equation 10 leads to much worse performance than using equation 9.

2.4. Comparison with other methods

Comparing with previous methods towards stabilizing the cluster-
ing process in inference phase mentioned in section 1, the proposed
method does not require any specific design of the objective function
and remains flexible in both hard and soft mask estimation branches.
However, it’s harder for the proposed method to be purely end-to-
end, since the hard mask estimation process is always necessary.
One possible way is to unfold the hard clustering process from a
random initialization to serve as layers in the network [20] so that a
post-network clustering is not necessary.

3. EXPERIMENTS

3.1. Dataset

We evaluated our system on the public available WSJ0-2mix dataset
for two speaker separation [5]. 30 hours of training and 10 hours
of validation data are generated from speakers in si tr s from the
datasets. The speech mixtures are generated by randomly selecting
utterances from different speakers in the Wall Street Journal dataset
(WSJ0) and mixing them at random relative signal-to-noise ratios
(SNR) between -5 dB and 5 dB. A 5-hour evaluation set is generated
in the same way using utterances from 16 unseen speakers in si dt 05
and si et 05. All the waveforms are resampled at 8 kHz. The input
feature is the log spectral computed using short-time Fourier trans-
form with 32 ms window length, 8 ms hop size, and the square root
of hanning window. Wiener-filter like mask [15] is used as the target
for soft mask estimation.

3.2. Model configuration

All models contain 4 Bi-directional LSTM layers with 300 hidden
units in each direction followed by a fully-connected (FC) layer with
Tanh(·) as nonlinearity function. The embedding dimension D is
set to 20, resulting in 2580 hidden units (20 × 129) in the FC layer.
The input features are splitted into non-overlapping chunks of 100-
frame length before being fed into the networks. No regularizations
or other training tricks are applied. Adam [21] is used as the op-
timizer with learning rate initialized to 1e−3. The learning rate is
halved if no best model is found in the training set for 3 consecutive
epochs. The maximum number of epochs was set to be 100. We
report scale-invariant source-to-noise ratio (SI-SNR) [6, 9] as the
evaluation metric.

3.3. Results and discussion

We first evaluate the proposed method on hard mask estimation task.
K-means and spherical K-means are selected as the hard cluster-
ing algorithms. For spherical K-means, all embeddings are normal-
ized to unit norm before processing. The networks are trained with
equation 2 as objective. Two types of inference-phase strategies are
tested: performing the same clustering algorithm from scratch, or
using IBM as initialization and run 1 or 2 EM iterations depending
on how the model is trained. The first strategy reflects the actual
inference-phase performance, and the second strategy matches the
training process of the network and reflects how well it has been
trained (i.e. the upper-bound performance of inference phase). Ta-
ble 1 shows the results. We can see that applying K-means from
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scratch leads to only slightly worse performance than the oracle set-
ting, showing that the network is behaving as how it is trained to be
in the inference phase. Spherical K-means has a larger performance
gap than K-means with higher actual and upper-bound performance.
This might be due to the selection of α in equation 7. Regarding the
convergence issues with multiple iterations in hard clustering men-
tioned in section 2.2.3, we can observe that both the actual and oracle
performance of 2 EM models are worse than those with only 1 EM
iteration, indicating that multiple iterations in hard clustering algo-
rithms is not beneficial.

Table 1. Performance of hard clustering algorithms with 1 or 2 EM
steps during training phase. Methods with * correspond to the ones
trained with 2 EM steps.

Method Inference SI-SNRi (dB)

K-means From scratch 8.8
IBM, 1EM 9.1

K-means* From scratch 8.8
IBM, 2EM 9.0

Spherical K-means From scratch 9.2
IBM, 1EM 10.0

Spherical K-means* From scratch 9.1
IBM, 2EM 9.9

Table 2 provides the results of soft mask estimation. Two types
of soft clustering algorithms, GMM and von Mises-Fisher distribu-
tions (vMF) [16], are selected together with K-means and spheri-
cal K-means respectively. Similarly, two types of inference-phase
strategies can be applied depending on whether the estimated or or-
acle binary masks are used to initialize the soft clustering branch
(’Hard’ and ’IBM’ in the table respectively). We can observe that K-
means+GMM leads to significantly better performance comparing
with the K-means hard clustering model, while minor improvement
is achieved in the spherical K-means+vMF case. This indicates that
clustering on unit hypersphere requires more investigation. More-
over, we find that models with 2 EM iterations are constantly worse
than those with only 1 EM iterations, which matches the observation
in hard mask estimation.

To show that equation 10 cannot guarantee that the target soft
mask is the local minimum, we train a GMM model directly using
equation 10 and run standard GMM EM iterations from scratch in
inference phase until convergence. As shown in row 3 in table 2,
the performance is significantly worse than any other models. This
proves that it’s not feasible to treat soft masks as local minimum.

We also investigate different combinations of hard and soft clus-
tering algorithms that apply on different scales. For a same set of
embeddings, the normalized ones are used for spherical K-means
or vMF, and the original ones are used for K-means or GMM. The
results are shown in the last two rows in table 2. Interestingly, com-
bining K-means and vMF leads to complete failure in the estimation
of hard masks. Looking into the distribution of the embeddings,
we speculate that the failure is caused by the contrast between the
two branches of the objectives, by which the model generates em-
beddings that favor vMF more. Possible resolutions might be either
to initialize the model with a pre-trained K-means hard clustering
model, or to assign a larger weight on the K-means objective in the
multi-task learning objective.

Finally we look into the combination of a non-iterative soft clus-
tering algorithm, the deep attractor network (DANet) [8, 9], together
with a K-means branch for binary mask estimation. The results are

Table 2. Performance of soft clustering algorithms with 1 or 2 EM
steps during training phase. Methods with * correspond to the ones
trained with 2 EM steps.

Method Inference SI-SNRi (dB)

K-means+GMM Hard, 1EM 9.3
IBM, 1EM 10.1

K-means+GMM* Hard, 2EM 9.3
IBM, 2EM 9.9

GMM From scratch 5.9

Spherical K-means+vMF Hard, 1EM 9.4
IBM, 1EM 10.0

Spherical K-means+vMF* Hard, 2EM 9.1
IBM, 2EM 9.7

K-means+vMF Hard, 1EM -8.7
IBM, 1EM 9.8

Spherical K-means+GMM Hard, 1EM 9.2
IBM, 1EM 10.2

shown in table 3. The original configuration for DANet is to firsts use
IBM for a M-step in K-means to estimate cluster centers, and then
use Softmax function on the dot product between embeddings and
centers to generate soft masks. The test time estimation is done by
use K-means to either estimate the binary mask or the cluster center
and then perform the soft mask estimation. We find that the original
DANet has huge gap between training- and inference-phases due to
the inaccurate estimation by K-means. After adding the K-means
branch, the actual performance significantly improves and achieves
the highest result among all systems. This indicates that the pro-
posed method can be applied to either iterative or non-iterative meth-
ods for a performance improvement in soft mask estimation.

Table 3. Performance of DANet with different configurations.

Method Inference SI-SNRi (dB)

DANet
Hard centroid 8.5

Hard mask 8.5
IBM 9.8

DANet* [8, 9] Hard centroid 9.6

K-means+DANet Hard 9.7
IBM 9.9

4. CONCLUSION

We propose a simple method for stabilizing time-frequency mask
estimation in clustering-based source separation systems. The key
concept is to train the embedding generation system so that ideal
binary mask is a local minimum/maximum for a selected hard clus-
tering algorithm. Soft clustering algorithms can then benefit from
the hard clustering algorithm by using the estimated binary mask as
the initialization. Experiments show that the proposed method is ro-
bust across various clustering methods and significantly bridges the
performance gap between training- and inference-phases.
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