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ABSTRACT
Homomorphic Encryption (HE) allows processing cipher-
text data, but it is a challenge to enable complex methods
such as multimedia decompression in the HE domain. In
this paper, we propose a novel scheme to enable FLAC (Free
Lossless Audio Codec) decompression in the HE domain.
FLAC applies linear prediction to predict the current sample
and Golomb coding to encode residuals. FLAC decoding
relies heavily on dynamic controls that HE does not support
due to unknown values of control variables after encryp-
tion. Our scheme regularizes dynamic controls in FLAC
decoding with static controls by calculating an encrypted
matching bit for each possible value of a control variable
and producing candidate results as if it were a match. The
summation of each possible value’s candidate results multi-
plied by its matching bit is equivalent to selecting the results
of the matched control value. Our FLAC decoding scheme
enables Single-Instruction Multiple-Data (SIMD): multiple
(e.g., 256) plaintexts are packed and encrypted into a single
ciphertext, and decoding one encrypted frame corresponds
to decoding multiple plaintext frames. Our scheme is appli-
cable to other audio compression standards based on similar
technologies. Experimental results are also reported.

Index Terms— FLAC, privacy-preserving processing,
homomorphic encryption.

1. INTRODUCTION

A growing amount of data has been uploaded to public clouds.
Losing control of their data is an important concern for virtu-

∗Corresponding author: Xiaojing Ma (lindahust@hust.edu.cn). This
work was supported in part by National Natural Science Foundation of
China (61771211), Fundamental Research Funds for the Central Uni-
versities (2017KFYXJJ064), Shenzhen Fundamental Research Program
(JCYJ20170413114215614) and Hubei Provincial Natural Science Founda-
tion General Program (2018CFB200).

ally all cloud users. To address this issue, privacy-preserving
data processing has been actively studied in recent years. To-
wards this goal, Homomorphic Encryption (HE) [1] allows
computations on ciphertexts to produce an encrypted version
of the desirable result. This would allow clouds to conduct
required data processing in the HE domain while the privacy
of the data is fully preserved.

A great effort has been directed to enable commonly used
algorithms and methods in the HE domain, such as simple
statistical functions [2], discrete cosine transform [3], bubble
sort [4], and AES [5]. It is a great challenge to enable complex
algorithms and methods in the HE domain since HE does not
support any dynamic control structure due to the fact that a
control value is encrypted and thus unknown. This is particu-
larly true for multimedia decompression, which relies heavily
on dynamic controls in decoding a bitstream. We have intro-
duced recently a novel approach to enable JPEG decompres-
sion in the HE domain [6], which regularizes Huffman decod-
ing with static controls to output only one DCT coefficient in
each iteration of decoding. This is the first decompression
enabled in the HE domain.

In this paper, we enable the second decompression, FLAC
[7], in the HE domain. FLAC is the most widely supported
lossless audio compression standard. Unlike JPEG that re-
lies on Huffman coding, FLAC relies on linear prediction and
Golomb coding [8], which are widely used in other compres-
sion standards such as SILK [9], Shorten [10], Apple Loss-
less, and MPEG-4 Audio Lossless Coding [11]. Like Huff-
man decoding in JPEG in [6], FLAC decoding relies heavily
on dynamic controls. The main challenge is to regularize the
dynamic controls in FLAC decoding with static controls and
sequential operations. To tackle this challenge, we examine
each possibility for an encrypted control value by comput-
ing an encrypted matching bit that indicates if the possibility
matches the control value or not, and would produce candi-
date results (outputs and new bitstreams, as describing in de-

675978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



tail in Section 3.2) as if it were a match. Candidate results
from different possibilities are of the same form, and the sum-
mation of each result multiplied by its encrypted matching bit
over all possibilities is equivalent to selecting the result of the
matched one in decoding plaintext FLAC audio.

There is a side benefit in our regularized FLAC decoding:
our decoding scheme enables Single-Instruction Multiple-
Data) (SIMD) [12] packing and decoding: multiple (e.g.,
256) plaintexts are packed and encrypted into a single ci-
phertext and decoding one ciphertext frame corresponds to
decoding multiple plaintext frames. This SIMD decoding is
unimaginable for a conventional FLAC decoding procedure.

2. FLAC OVERVIEW

FLAC [7] uses linear prediction to predict the current sample
from preceding samples and Golomb coding to encode the
residual. A FLAC bitstream comprises a file header, meta-
data blocks, and frames. A frame comprises a frame header
and subframes, one subframe per channel. FLAC supports 4
methods of prediction. We choose the fixed linear predictor
in our studies and describe it in this section.

During encoding, audio samples are partitioned into
blocks, each with blocksize samples per channel. The chan-
nels in a block may be combined, such as converted to mid
channel of bps bits and side channel of bps + 1 bits for
bps-bit stereo audio. Each channel is then encoded inde-
pendently into a subframe using a linear predictor of a fixed
order ∈ [0, 4] with order preceding samples to predict the
current sample [10, 13] and Golomb coding [8] to encode
the residual. The initial order samples for prediction, called
warm-up samples, are written into a subframe without coding.

In Golomb coding, an integer n is first encoded to N ≥ 0
as follows: N = 2n if n ≥ 0 and N = 1 − 2(n + 1) if
n < 0. N is then split into two parts using a Rice parameter
R: MSB as the quotient N div 2R and LSB as the remainder
N mod 2R. MSB is encoded with unary coding while LSB
is in binary representation with R bits. Unary coding encodes
an integer t ≥ 0 with t zeros followed by a stop bit one.
For example, if the Rice parameter R = 3 and n = 18, then
N = 36, and MSB = 36/23 = 4 encoded as 00001, LSB =
36%23 = 4 encoded as 100. The resulting bits are 00001100.
The encoder writes the Rice parameter and coded residuals
into the residual block of a subframe.

In decoding a subframe, order is obtained from the sub-
frame header, and order warm-up samples are extracted. To
decode each of (blocksize − order) residuals, the Rice pa-
rameter R is obtained from the residual block, MSB is ob-
tained by counting bit 0 before a stop bit 1, and LSB is the
following R bits, resulting in N = (MSB × 2R + LSB). If
N is even, then the residual n = N/2. If N is odd, then the
residual n = (1 − N)/2 − 1. After decoding (blocksize −
order) residuals, the (blocksize−order) samples in the sub-
frame can be recovered by an inverse process of linear predic-

0 001 001 0 0000000000100101 0010

pad type order wasted warm up sample 0 residuals

37

111 0110 101……

rice
parameter

2 -2, 3, -1……1

order sample 0 rice parameter residuals

bits per sample =16

37, 35, 38, 37……samples

Fig. 1. An example of decoding a subframe using fixed linear
prediction.

tion, and the decoded subframes can be recombined if needed
to recover the samples of the original channels.

Fig. 1 shows an example of decoding a subframe using
fixed linear prediction with 16 bits per sample, within type =
001 represents using fixed linear prediction and order = 1
indicates one warm-up sample. The warm-up sample is ob-
tained from the subsequent 16 bits, which is 37. From the
figure, the Rice parameter R = 2. Residuals are recovered,
residual0 = −2, residual1 = 3, residual2 = −1, · · · .
With order = 1, the current sample can be recovered by
adding its decoded residual to the preceding sample, result-
ing in decoded samples: 37, 35, 38, 37, · · · , where the first
integer is the warm-up sample.

3. FLAC DECODING IN THE HE DOMAIN

3.1. Encryption

Like other full multimedia encryption, we encrypt FLAC pay-
loads while leave headers unencrypted. More specifically, the
FLAC file header, metadata blocks, and the frame header are
unencrypted, while subframes (including subframe headers)
in a frame are encrypted with plaintexts ∈ Z2, wherein ad-
dition and multiplication are equivalent to binary XOR and
AND operations, respectively. For b ∈ Z2, its ciphertext is
denoted as [b]. For an integer n, [n] denotes its binary encryp-
tion, i.e., encryption of each bit in its binary representation. In
our work, BGV [14] is used as the homomorphic encryption.

The unencrypted portion (i.e., the file and frame head-
ers and metadata) can be used for identifying the basic audio
and compression information and for finding specific frames.
Since the actual content is contained in subframes, which is
fully encrypted, adversaries cannot access any content infor-
mation except the length of each frame.

As we will see next, each frame is decoded with the same
sequential operations. This allows us to apply SIMD to pack
D plaintext frames into a single ciphertext frame, where D
is determined by the parameters of homomorphic encryption.
Decoding one ciphertext frame is equivalent to decoding D
plaintext frames.

676



Start

Obtaining bps from frame header
and [order] from subframe header

Getting matching bit [b] for each possible order in [0,4]

Getting candidate warm-up samples for each possible order in [0,4]

Merging  candidate samples

Generating a new bitstream

End

Fig. 2. Flow chart of extracting warm-up samples in the ho-
momorphic encryption domain

3.2. Decoding a subframe in the HE domain

Decoding parameters in the subframe such as order and
Rice parameter R are encrypted and thus unknown. Without
knowing order, we don’t know how many warm-up samples
are used or where the bits of a residue are located. Without
knowing Rice parameter R, we don’t know how many bits
for LSB. In addition, unary decoding cannot be executed
in the HE domain since a stop bit 1 cannot be identified,
leading to undetermined MSB. These challenges are tackled
by comparing each possibility with the bitstream to produce
an encrypted matching bit, multiplying the matching bit with
the result assuming the possibility is a match, and then tak-
ing a summation of their products over all possibilities. The
obtained result is equivalent to selecting the result of the
matched possibility. The number of channels is in the un-
encrypted metadata and thus the number of subframes in a
frame is known. Subframes in a frame are decoded sequen-
tially. We focus on describing decoding one subframe in this
section.

3.2.1. Extract warm-up samples

The prediction order, order ∈ [0, 4], is represented by 3 bits
in the encrypted subframe header, denoted as [order], which
determines the number of warm-up samples. For each possi-
ble value k ∈ [0, 4] of order, we compare it with [order] to
produce an encrypted matching bit [bk], and obtain its warm-
up samples and drop consumed bits as if k is a match. The
summation of a result, either warm-up samples or remaining
bits, multiplied by its matching bit over all possible values of
k is equivalent to selecting the warm-up samples or remaining
bits of the matched k = order. Fig. 2 shows the workflow of
the process.

Algorithm 1 shows the detail of producing a matching bit
[b]k for a candidate value k of order. It multiples a bit of
[order] if the corresponding bit of the candidate is 1 or its

Algorithm 1: Matching prediction order
Input: Encrypted prediction order, [order], of 3 bits

{[order]i} from bitstream, and k of 3 bits {ki}
as a candidate value of order.

Output: Encrypted matching bit [b]k.
[b]k = [1];
for i = 0 to 2 do

if ki = 1;
then

[b]k = [b]k ∗ [order]i;
else

[b]k = [b]k ∗ ([order]i + [1]);
end

end

inverse otherwise. In the algorithm, [x] + [1] is equivalent to
the inverse ([NOT x]) of [x] for a bit x. Among all candidates,
only the matching candidate has its [b]order = [1]. All other
candidates have their [b]k 6=order = [0].

For each order candidate k, extracting its k candidate
warm-up samples {[samplej ]

k | j ∈ [0, k − 1]} is straight-
forward after getting bps from the unencrypted frame header.
The final warm-up samples can be found as follows.

[Samplej ] =
∑
k,j<k

[samplej ]
k ∗ [b]k, j = 0, 1, ..., 3.

For each order candidate k, a new bitstream [Newbits]k

is generated by dropping its consumed bits. These candidates
{[Newbits]k} are merged to get a new bitstream for the next
decoding:

[Newbits] =
∑

k=0,··· ,4

[Newbits]k ∗ [bk].

3.2.2. Extract residuals

To get MSB for a residual, we need to search for the first
stop bit 1. In our scheme, the maximum value of MSB
(MAX MSB) is computed and written into a padding meta-
data block during encryption. At decoding, MAX MSB is
extracted from the unencrypted metadata block. Similar to ex-
tracting warm-up samples in Section 3.2.1, for each candidate
msb ∈ [0,MAX MSB] of MSB, we calculate a match-
ing bit according to Algorithm 2 and merge these candidates
to obtain the final [MSB] and produce an updated bitstream
[Newbits] in the same way as in Section 3.2.1.

LSB of a residual depends on encrypted Rice parameter
[R]. In a similar manner, for each candidate r ∈ [0, 14] of R,
we calculate an encrypted matching bit [b], obtain its candi-
date LSB, and update its MSB. For example, if r = 3, then
its LSB is the first 3 bits in the bitstream, [MSB] is updated
to ([MSB] � 3). A candidate residual is then computed by
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Algorithm 2: Matching MSB
Input: A candidate msb of MSB and an encrypted

bitstream [bits] ([bits]i is i-th bit of [bits])
Output: Encrypted matching bit [b] for candidate msb.
[b] = [1];
for i = 0 to msb do

[b] = [b] ∗ ([bits]i + [1]);
end
[b] = [b] ∗ [bits]i+1;

the following equations:

[Residual] = ([LSB] + [MSB]� R)� 1 (1)

[Residual]i = [Residual]i ⊕ [S] (2)

[Residual] = [S][Residual] (3)

where [S] is last bit of LSB, [Residaul]i is the i-th bit of
[Residual]. In Eq. 3, [S] is inserted into [Residual] as its
sign bit. In the above equations, “�” is left shift, “�” is
right shift, “+” means addition with carry, and “⊕” means
bitwise addition without carry. The candidate residual and
the new bitstream for each candidate r of R are then merged
respectively in a similar manner as in Section 3.2.1 to produce
the final residual and new bitstream.

To get all residuals, a set of candidate residuals is gen-
erated for each possible prediction order, and these candi-
date residual sets are merged to get the final blocksize-order
residuals.

3.2.3. Extract all samples

With warm-up samples obtained in Section 3.2.1 and predic-
tion residuals obtained in Section 3.2.2, all the samples can
be recovered with linear operations. This process is repeated
until all subframes in a frame are decoded.

4. EXPERIMENTAL RESULTS

We have implemented the proposed scheme in C++ based on
HELib [15] that implements BGV, and the independent FLAC
Group’s implementation of FLAC [7]. The experiments were
carried out on a server with Intel Xeon CPU E5-2680 v4 of
2.40GHz with 14 physical (28 logical) cores and 256GB of
RAM running CentOS Linux release 6.5. All test audio clips
were of one-second audio with 44.1kHz, 2 channels, and 16
bits per sample, and blocksize was set to 18, resulting in 2450
plaintext frames per audio clip. The following BGV param-
eters were chosen in our experiments: m = 4369, p = 2,
d = 16, r = 1, and levels L = 41, which led to D = 256,
i.e., 256 plaintext frames were packed together and encrypted
into one ciphertext frame, resulting in 10 (=d 2450256 e) encrypted
frames. After decoding in the HE domain, we decrypted the

Table 1. Running time (s) of decoding one frame.
FLAC File Size MAX MSB Time
romantic f0 fr0 232 14 2782.52
romantic f0 fr1 320 14 3366.17
romantic f0 fr2 336 14 3454.33
romantic f0 fr3 352 14 3569.17
romantic f0 fr4 376 14 3732.64
romantic f1 fr0 336 16 3478.3
romantic f1 fr1 376 16 3747.68
rock fr0 376 14 3754.46
rock fr1 440 14 4236.99
absolute fr0 232 17 2769.07
absolute fr1 336 17 3451.78

result and compared with the decoding result by the FLAC
decoder [7] without encryption to ensure correctness of our
results.

Table 1 shows the running time of decoding one frame
with different files and frames. We can observe that the de-
coding time of frames with similar lengths is similar in value.
This is because the bitstream’s length determines the num-
ber of multiplications in generating a new bitstream and the
number of bits that need bootstrapping, which dominates the
execution time. MAX MSB does not show much impact on
the decoding time because MAX MSBs in Table 1 are all
less than the number of logical cores available in the experi-
mental computer, and thus they could be executed in parallel.

Like other algorithms and methods executed in the HE do-
main, it is still too slow to decode FLAC audio in the HE do-
main, which makes the proposed scheme impractical for most
applications. This issue should be lessened with the progress
of homomorphic encryption. A recent paper proposed a fast
homomorphic encryption scheme that can perform bootstrap-
ping in less than 0.1s [16], much faster than HELib’s boot-
strapping, which takes about 75s on our test computer with
the same BGV parameters used in our experiments. This may
bring a hope to apply the proposed FLAC decoding in the ho-
momorphic encryption domain to some real applications. We
plan to test our proposed scheme with this fast HE scheme
once its implementation supports SIMD.

5. CONCLUSIONS

In this paper, we proposed a novel scheme to enable FLAC de-
compression in the homomorphic encryption domain by regu-
larizing dynamic controls in FLAC decoding with static con-
trols. Our FLAC decoding enables SIMD: multiple (e.g., 256)
plaintexts are encrypted into one ciphertext, and decoding one
encrypted frame corresponds to decoding multiple plaintext
frames. Our scheme is applicable to other audio compression
standards based on linear prediction and Golomb coding such
as SILK, Shorten, Apple Lossless, and MPEG-4 ALS.
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