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ABSTRACT

This paper introduces a deep neural network based feature extrac-
tion scheme that aims to improve the trade-off between utility and
privacy in speaker classification tasks. In the proposed scenario we
develop a feature representation that helps to maximize the perfor-
mance of a gender classifier while minimizing additional speaker
identity information. Our approach is to use variational informa-
tion feature extraction that allows for gender discrimination (utility)
but minimizes the information level of the features, thus discourag-
ing speaker identification adversarial attacks (privacy). We analyze
the model’s loss function and the budget scaling factor used to con-
trol the balance of utility vs. privacy. It is experimentally shown
that the proposed method reduces privacy risks without significantly
deprecating utility and that it also generalizes well to new speaker
contexts.

Index Terms— Privacy, utility, adversarial attack, variational
information, mutual information, speaker classification

1. INTRODUCTION

The ubiquitous use of portable smart devices has also exposed us to
an abundance of sensors such as microphones and cameras. Besides
the obvious benefits there are also high privacy risks involved, espe-
cially when these sensor are connected in a (ad-hoc) sensor network.
Evidently, it would be optimal if the sensors were designed to han-
dle the desired task with maximum performance (utility) and at the
same time minimize task-extraneous information (privacy). Consid-
ering that utility and privacy are competing goals and that they can
not be simultaneously maximized, we like to explore the trade-off
relation between utility and privacy in a speaker classification task.

A good illustrator of this concept is a scenario where a small
office environment is host to a wireless acoustic sensor network
(WASN) with distributed microphones and a processing scheme
[1], [2] that performs deep neural network (DNN) based feature
extraction at node level. The extracted feature representation is
sent across the network to a DNN-based sink node which performs
e.g. a speaker gender discrimination task. Without additional mea-
sures, the feature representation extracted for the sole purpose of
gender discrimination also carries a significant amount of speaker-
dependent data. Therefore, we propose to employ privacy-aware
variational information feature extraction which produces a lossy,
mutual information (MI) based information minimization and an-
alyze its effects on the balance between the accuracy of gender
discrimination (utility) and speaker identification (privacy). Due to
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the intrinsic relation between both classification tasks, this scenario
is challenging and will not have a trivial solution.

The remainder of this paper is organized as follows: We first dis-
cuss the relation to prior work, we then describe the privacy-aware
feature extraction model, followed by a description of the neural net-
work architecture used, after which we detail the experimental layout
and the results, finalizing with conclusions and ideas for future work.

2. RELATION TO PRIOR WORK

The topic of privacy-aware feature extraction was previously inves-
tigated by the authors in [1], where generative adversarial feature
extraction was used to control the trade-off between gender discrim-
ination and speaker identification. Although efficient, this method
does not lead to a generalized information minimization technique
due to its dependency on a specific attacker configuration. Therefore,
the purpose of this paper is to introduce a more general approach.

The proposed solution is inspired by variational information au-
toencoders [3] where the encoding variable is a compact data rep-
resentation and where a re-parametrization trick [4] is used to allow
stochastic sampling during backpropagation. Our choice of MI as a
regularization criterion is supported by works like [5] and [6], where
it is successfully used to increase network performance and robust-
ness against adversarial attacks in the testing domain. As far as the
authors are aware, at the time of writing this paper, there is no previ-
ous investigation on using variational information networks against
adversarial feature-interception attacks in WASNs.

3. DEFENDER VERSUS ATTACKER

3.1. Model description

We start with the model proposed in [1] where the concepts of de-
fender and attacker are introduced and adapt this to the proposed
scenario as shown in Fig. 1.

The defender consists of a feature extraction block f which
transforms the low level feature set X into the high level feature
set Z. The latter is then passed to the multilayer perceptron (MLP)
based gender discriminator g with the weights and biases parame-
ters Φg which in turn estimates the gender class labels’ probabilities
P (Γ).

The feature extractor block f is composed of a convolutional
neural network (CNN) based structure c with weights and biases pa-
rameters Φc which uses as input the low level feature set X . The
CNN’s output is concomitantly passed to the dense layers µ and σ
which have the respective weights and biases parameters Φµ and
Φσ . The output of the σ layer is multiplied with samples from a ζ-
dimensional standard normal distribution N (0, I) and the result is
then added to the output of the µ layer, creating thus the high level
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Fig. 1. Flow chart of privacy-aware feature extraction for gender
discrimination vs. speaker identification.

feature set Z. The motivation behind this stochastic encoding is ex-
plained in the following section.

The attacker, which consists of an MLP-based classifier a with
weights and biases parameters Φa, intercepts the high level feature
set Z with which it estimate the speaker labels’ probabilities P (Σ).

3.2. Training the defender

In our example, the objective of the defender is to develop a feature
extraction process that leads to good gender discrimination accuracy
but which will result in bad classification accuracy if intercepted by
an attacker for a more privacy invasive task such as speaker identifi-
cation.

The first part of the objective can be formulated as minimizing
the cross-entropy between the gender labels’ true P (Γt) and esti-
mated P (Γ) probability distributions as shown:

min
Φc,Φµ,Φσ

EΓt∼p(Γt)[− log p(Γ)]. (1)

The second part of the objective can be addressed by minimiz-
ing the information in the high level feature set Z, thus rendering
it as useless as possible to classification tasks. A good information
regularization criterion is the mutual information I(X;Z) between
the input and output feature sets[5], [6]. Estimating this quantity is
computationally challenging. A more practical solution is to find an
MI upper bound Imax(X;Z) ≥ I(X;Z) and use this bound in the
optimization process.

For this, we introduce the entropy-based MI formulation:

I(X;Z) = H(Z)−H(Z|X)

= −
∫
p(z) log p(z)dz +

∫
p(x, z) log p(z|x)dxdz.

(2)

Recently, a stochastic encoding mechanism was introduced [4]
in order to obtain an analytical expression of H(Z|X). This is the
reason why we construct a normal-distributed encoding variable z =
µ(c(x)) · ε+ σ(c(x)), where ε ∼ N (0, I). In this way we force the
conditional distribution of z given the input variable x to follow a
Gaussian distribution:

p(z|x) = N (µ(c(x)), σ(c(x))). (3)

Moreover, the stochastic sampling from p(z|x) during backpropaga-
tion can be efficiently performed by updating the Φµ and Φσ param-
eters of layers µ and σ. This is referred to as the re-parametrization
trick [4].

We are now left with finding an analytical expression for H(Z).
In this regard we introduce a variational distribution q(z), which

for simplicity we assume to be Gaussian N (0, I), as also suggested
by [5]. Using the Kullback-Leibler divergence’s property of always
being positive [7] we obtain an upper bound for H(Z) :

KL(p(z)||q(z)) ≥ 0⇒
∫
p(z) log

p(z)

q(z)
dz ≥ 0

⇒ −
∫
p(z) log p(z)dz ≤ −

∫
p(z) log q(z)dz.

(4)

Using 2 and 4 we upperbound I(X;Z) as:

I(X;Z) ≤ −
∫
p(z) log q(z)dz +

∫
p(x, z) log p(z|x)dxdz

= −
∫
p(x, z) log q(z)dxdz +

∫
p(x, z) log p(z|x)dxdz

=

∫
p(x, z) log

p(z|x)

q(z)
dxdz = KL(p(z|x)||q(z)),

(5)

where KL is the Kullback-Leibler distance between the conditional
p(z|x) and variational q(z) distributions. We can now define the MI
upper bound Imax(X;Z) ≥ I(X;Z) as:

Imax(X;Z) = KL(p(z|x)||q(z)). (6)

In this way we can reduce the impact that the low level feature rep-
resentation X has on the high level feature representation Z.

According to [8] and given 3 and that q(z) = N (0, I) we get:

Imax(X;Z) =
1

2

(
tr(Σz) + µ>z µz − log det(Σz)− ζ

)
, (7)

where Σz = diag(σ(c(x))2) and µz = µ(c(x)).
Considering the earlier mentioned defender’s competing goals

of offering good gender discrimination accuracy, expressed by 1
while at the same time reducing task-extraneous information by min-
imizing Imax(X;Z), the defender’s loss function to be minimized
can be formulated as:

min
Φc,Φµ,Φσ

EΓt∼p(Γt)[− log p(Γ)] + βImax(X;Z). (8)

Similarly to [1], [9] and [6] a budget scaling factor β is used to con-
trol how much gender discrimination accuracy we wish to renounce
in favor of a more compressed high level feature representation.

3.3. Training the attacker

We use the feature extractor f to extract the high level feature rep-
resentation Z which is then used by the attacker. The goal of the
attacker is to perform speaker identification as best as possible using
the intercepted feature set Z. This is done by minimizing the cross-
entropy between the speaker labels’ true P (Σt) and estimated P (Σ)
probability distributions:

min
Φa

EΣt∼p(Σt)[− log p(Σ)]. (9)

4. NETWORK CONFIGURATION

4.1. Low level features extractor

We use the log mel-band energy (LMBE) representation of the sig-
nal xs(t) as the low level feature input for the neural network based
feature extractor f . After applying a short-time Fourier transform
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Fig. 2. Network architecture for privacy-aware variational informa-
tion feature extraction.

(STFT) Xstft(κ, b) with window length L1 and step R1 to xs(t),
where κ and b denote the frequency bin and time frame index, re-
spectively, we map the squared-magnitude spectrum onto the Mel
scale [10], resulting in the Mel-spectrum Xmel(k

′, b), where k′ =
0, 1, . . . ,K′ − 1 is the index of the Mel scale frequency bin. The
LMBE features are then obtained by taking the logarithm of the ab-
solute Mel-spectrum and keeping the first K′′ coefficients:

Xlmbe(k
′, b) = log |Xmel(k

′, b)|. (10)

4.2. High level features extractor

The architecture of the feature extractor f is shown in Fig. 2. The
CNN-based c block consists of two convolutional layers of sizes
32 ×K′′ and 16 × 16, each containing 32 and respectively 64 ker-
nels of size 5 × 5 and rectified linear unit (ReLu) activation func-
tions. Each layer is followed by a max-pooling layer of stride S1 =
S2 = 2 and filter size 2 × 2. The extractor takes in a high resolu-
tion sample stream Xlmbe of the form

[
T
R1

]
× K′′, where T is the

signal’s time length. The extractor’s output is stacked in the form
of
[

T
R1×32

]
× 4096 and passed to the dense layers µ and σ, each

containing ζ neurons. The output of layer σ is multiplied with sam-
ples from a ζ-dimensional standard normal distributionN (0, I) and
added to the output of layer µ. The resulting high level feature rep-
resentation has the form

[
T

R1×32

]
× ζ, where each feature vector is

responsible for a receptive field of length 32R1 s.

4.3. Gender discriminator and speaker identifier

We perform gender discrimination and speaker identification for
each resulting high level feature vector Z by using the MLP ar-
chitectures g and respectively a presented in Fig. 2. Both MLP
architectures consist of 1024 fully connected nodes that use ReLu
activation functions and a final layer of two respectively St output
nodes, on which we apply a softmax function. For training we em-
ploy the Adam optimizer [11] with a learning rate of 0.0001 and we
also use a dropout rate of 0.4 [12].

20 speakers WSJ 80 speakers WSJ
240 speakers TIMIT

80 %
data/

speaker

20 %
data/

speaker

Gender testing set WSJ
Gender testing set TIMIT

Training
set WSJ

Evaluation
set WSJ

Speaker testing set WSJ:
4 batches × 20 speakers

Speaker testing set TIMIT:
20 batches × 20 speakers

80 %
data/speaker

20 %
data/speaker

Training
subset

Evaluation
subset

Table 1. Division of audio data into training, evaluation and testing
sets, along with corresponding subsets.

5. EXPERIMENTS

5.1. Database and settings

The database contains 100 speakers from the WSJ corpus [13], of
which 50 are male and 50 are female, with an average of 872 sec-
onds (142 utterances) of audio per speaker. We select St/2 male and
respectively female speakers, and randomly split every individual’s
audio data into training (80%) and evaluation (20%) sets (WSJ). The
data from the remaining 100 − St speakers is used for the gender
testing set (WSJ). The 100 − St speakers are also divided into sub-
groups of St, and every speaker’s audio data is randomly split into
speaker training (80%) and speaker evaluation (20%) subsets, to-
gether forming the speaker testing set (WSJ).

The database is supplemented with 420 speakers from the
TIMIT corpus [14], of which 290 are male and 130 are female,
with an average of 31 seconds (10 utterances) of audio per speaker,
thus forming the gender testing set TIMIT. Additionally the 420
speakers are also divided into subgroups of St, and every speaker’s
audio data is randomly split into speaker training (80%) and speaker
evaluation (20%) subsets, together forming the speaker testing set
TIMIT. This structure is also described in Table 1, for St = 20
speakers.

We propose to use utterance level accuracy as a performance
measure for both gender and speaker classification:

accuracy =
no. of correctly classified utterances

total no. of utterances
, (11)

where the utterance’s class label is assigned using a majority deci-
sion on the class labels of the utterance’s feature frames.

The values of the system’s parameters are: St = 20, L1 =
0.026 s, R1 = 0.013 s, K′′ = 32, ζ = 1024.

5.2. Feature extraction and classification

We first train the defender part of our model for an empirically se-
lected number of 5000 iterations and a mini-batch size of 300 sam-
ples. Training is done on the training set WSJ and evaluation on
the evaluation set WSJ. The accuracy of the latter is depicted in Fig.
3 under the label ”Gender eval. WSJ”. We then test the gender
discrimination accuracy of the already trained model on the gender
testing set WSJ and on the gender testing set TIMIT. The results are
depicted in Fig. 3 under the labels ”Gender test WSJ” and ”Gender
test TIMIT” respectively. This procedure is applied for the system-
atically varied values of the budget scaling factor β.
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Fig. 3. The influence of the budget scaling factor β on gender dis-
crimination and speaker identification accuracy using the WSJ and
TIMIT data sets.

We next train the attacker part of our model by concatenating the
previously trained feature extractor f with the attacker architecture
detailed in Fig. 2. Training is performed on the training set WSJ for
an empirically selected number of 5000 iterations and a mini-batch
size of 300 samples. Evaluation is performed on the evaluation set
WSJ. The accuracy of the latter is depicted in Fig. 3 under the label
”Speaker eval. WSJ”. We apply the same method to the speaker test-
ing sets WSJ and TIMIT, where training is performed on the training
subsets and evaluation on the evaluation subsets. The speaker iden-
tification accuracy results are depicted in Fig. 3 under the labels
”Speaker test WSJ” and ”Speaker test TIMIT” respectively. This
procedure is also applied for the systematically varied values of the
budget scaling factor β.

5.3. Discussion

Our first observation is that for β = 0, meaning that no mutual infor-
mation regularization is used, the high level feature set Z which is
extracted for the sole purpose of performing gender discrimination
also carries a significant amount of speaker-dependent data, resulting
in high speaker identification accuracy even for the smaller TIMIT
data set.

As soon as β is increased, thus increasing the emphasis on the
variational information minimization during the feature extraction
process, a steep deprecation of speaker identification can be ob-
served. For β ≤ 0.1 the gender discrimination is not significantly
affected, only dropping by a mean accuracy of 6%, while speaker
identification drops by 70%. For larger values of β the deprecation
of speaker identification continues but at a higher gender discrimi-
nation expense until for β = 5, both tasks report minimum perfor-
mance, similar to random guessing. Moreover, deeper MLP speaker
identifier architectures have also been used in trying to simulate a
more powerful attacker but no significant deviation was observed.

6. CONCLUSIONS AND FUTURE WORK

We have empirically demonstrated that variational information fea-
ture extraction can be successfully employed to reduce the amount

of task-extraneous information that DNN-extracted features inadver-
tently carry and thus strengthen their robustness against adversarial
feature-interception attacks. For this, a privacy-aware network con-
figuration along with a general loss function were proposed and a
budget scaling factor was introduced and analyzed.

The two competing tasks and the databases were chosen as to
best depict the proposed concept. In future works we aim to broaden
the range of utility-based acoustic classification tasks and the range
of privacy-invasive attackers. This will also consider non-parametric
mutual information estimation.
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