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ABSTRACT
The problem of higher order sound field capture with spher-
ical microphone arrays is considered. While A-format car-
dioid designs are commonplace for first order capture, inter-
est remains in the increased spatial resolution delivered by
higher order arrays. Spherical arrays typically use omnidi-
rectional microphones mounted on a rigid baffle, from which
higher order spatial components are estimated by accounting
for radial mode strength. This produces a design trade-off be-
tween with small arrays for spatial aliasing performance and
large arrays for reduced amplification of instrument noise at
low frequencies. A practical open sphere design is proposed
that contains cardioid microphones mounted at multiple radii
to fulfill both criteria. A design example with a two spheres of
16-channel cardioids at 42 mm and 420 mm radius produces
white noise gain above unity on third order components down
to 200 Hz, a decade lower than a rigid 32-channel 42 mm
sphere of omnidirectional microphones.

Index Terms— Fourier acoustics, spherical microphone
arrays, sound field capture.

1. INTRODUCTION

A sound field is commonly defined as a spherical harmonic
expansion of modal coefficients about a notional origin, in
particular in the context of spherical microphone arrays and
Higher Order Ambisonics [1]. Ideally, colocated micro-
phones with directivity pattern equalling that of the spherical
harmonics would yield the sound field coefficients up to a
given order, as is the case for orders 0 and 1 with the ideal B-
format microphone that contains an omnidirectional and two
or three coincident pressure gradient microphones1. Owing
to the difficulty of manufacturing microphones with direc-
tivity patterns beyond the first order, higher order capture
typically involves relatively large numbers of omnidirectional
pressure microphones near-uniformly distributed on a sphere
of fixed radius [2], using an analytic model to compensate
for the sound field’s radial mode strength and thereby in-
ferring the sound field at the origin. Free-space spheres of

Email: mark.r.thomas@ieee.org
1A similar statement can be made for the ideal A-format microphone.

omnidirectional microphones exhibit spectral nulls in the
mode strength due to periodic zero crossings in the spherical
Bessel functions; as such it has become popular to mount
microphones on a rigid spherical baffle, using the scattered
sound field to ‘fill in’ the nulls [2]. Unfortunately, embedding
microphones in the surface of a rigid scatterer produces a
tradeoff between high frequency aliasing performance and
low frequency noise gain depending upon the choice of scat-
terer radius. Dual-radius open spheres [3], reconfigurable
multi-radius spheres [4] and open spheres surrounding a rigid
sphere [5] have been proposed to address this issue. In the
case of radial cardioid microphones, which can be viewed
as an acoustic mixer between pressure and pressure gradient
operation, periodic zero crossings in the Bessel and Bessel
derivatives occur out of phase with one another so that term
fills in spectra when the other term is deficient [3].

This paper proposes a set of design criteria for a practi-
cal dual-radius cardioid sphere. Using arbitrary numbers of
microphones whose distributions are derived from the mini-
mized potential energy of charged particles on a unit sphere,
it is shown that 16 and 32-microphone solutions exhibit some
attractive properties. Microphone capsules are mounted on
the vertices of polyhedra for acoustic transparency, with an
inner sphere attached to an outer sphere with the same ver-
tex configuration by elasticated supports. Comparisons in
white noise gain are drawn between an example case with
16-channel cardioid spheres of radius 42 mm and 420 mm
and a 32-channel sphere of pressure microphones on a 42 mm
sphere, demonstrating the efficacy of the proposed topology.

2. PROPOSED DESIGN

Let (r,Ω) be a location in 3D space, where Ω = (θ, φ),
θ = [0, π], φ = [0, 2π) are colatitude and azimuth angles.
Given a sound field in the spherical harmonic domain S̆m

l (ω),
a microphone at radius r receives a signal at frequency ω [2]

P (r,Ω, ω) =

N∑
l=0

l∑
m=−l

bl

(ω
c
r
)
S̆m
l (ω)Y m

l (Ω), (1)
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(a) Open Sphere
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(b) Rigid Sphere
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(c) Radial Cardioids

Fig. 1. Mode strengths for r = 100 mm, orders 0 to 3.

where l andm are degree and order and Y m
l (Ω) are the spher-

ical harmonics2 up to order N . The mode strength bl
(
ω
c r
)

is
a function of radius and microphone directivity [3]

bl

(ω
c
r
)

= 4πil


jl(

ω
c r) Open sphere

jl(
ω
c r)−

j′l(
ω
c a)

h′
l(

ω
c a)hl(

ω
c r) Rigid sphere

jl(
ω
c r)− ij

′
l(

ω
c r) Radial cardioid,

(2)
where a is a rigid sphere radius, jl(x) are the spherical Bessel
functions, hl(x) the spherical Hankel functions3 and (·)′(x)
is a derivative w.r.t. the argument. Expansion (1) may be
simplified to

P (r, θ, φ, ω) =

N∑
l=0

l∑
m=−l

S̆m
l (ω)Ψm

l (r,Ω, ω) (3)

by defining a new basis

Ψm
l (r,Ω, ω) = bl

(ω
c
r
)
Y m
l (Ω). (4)

Further simplifying the notation as a vector product for P dis-
crete microphone locations, (3) becomes

P(ω) = Ψ(ω)S̆(ω), (5)

where Ψ(ω) is a P × (N + 1)2 basis matrix, S̆(ω) an (N +
1)2 × 1 vector of expansion coefficients and P(ω) a P × 1

vector of microphone signals. A practical solution for S̆(ω)
requires constraints to prevent excessive microphone capsule
gain. In an exemplary unconstrained case,

S̆(ω) = Ψ(ω)†P(ω) = ξ(ω)P(ω) (6)

is the least-squares solution where (·)† is a pseudo-inverse.

2The type of spherical harmonics, including complex/real, normalization
conventions phase conventions, is unimportant.

3The type of Hankel function is a function of Fourier Transform conven-
tion and sign convention on direction of propagation.

Fig. 1 shows normalized mode strengths as a function
of frequency for 100 mm radius open omni, rigid omni, and
open cardioid configurations. The rapid low frequency mode
strength attenuation, coupled with spatial aliasing that is lim-
ited by inter-microphone spacing, yields a design tradeoff in
microphone radius between low frequency noise and high
frequency aliasing performance for rigid designs. Fig. 1(c)
shows that free-space cardioids offer two main benefits.
Firstly, for a given radius they provide greater low frequency
mode strength at all orders, in particular the first. Secondly,
free-space operation allows the embedding of spheres at arbi-
trary radii that can be optimized for different frequencies. The
remainder of this paper investigates the design of practical
dual-radius cardioid spherical microphone arrays.

2.1. Design Criteria

In order to make a practical dual open-sphere solution, it is
proposed to use a polyhedral design with which each micro-
phone is mounted to a vertex. The array should aim to fulfill
the following criteria:

1. Near-uniformity to aid the conditioning of (6) [2].

2. A small number of unique edge lengths and vertex
pieces to simplify the BOM and aid manufacture.

3. Multiples of 8 microphones for compatibility with
common microphone amplifiers.

4. ≥ (N + 1)2 microphones, preferably = (N + 1)2 to
minimize the number of microphones for order N .

5. Ease of mounting to a microphone stand.

6. Acoustic transparency in the audible frequency range.

7. Unoccluded backport for pressure-gradient operation.

8. Ability to suspend smaller spheres from larger outer
spheres concentrically.
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(a) Top (b) Side (c) Front

Fig. 2. Minimum energy solution. 16 vertices, 28 faces, 42 edges. Vertices (12xv5, 4xv6) and edges ({0.83, 0.88, 0.93, 1.02}r0)
are color coded by type. The v6 nodes (black) form a tetrahedron. A horizontal equilateral triangle (green) lies at the bottom.

2.2. Minimum Energy Distributions

Several solutions to Criterion 1 are available as standard poly-
hedra [6], minimum energy [7, 8], hyperinterpolation [9] and
T-designs [10]. Minimum energy designs are a natural start-
ing point for microphone distributions as they generalize to
any number of nodes and are relatively straightforward to cal-
culate. Here we explore some properties of minimum energy
solutions for practical open-sphere microphone arrays.

Treating nodes as equally charged particles that mutually
repel one another on the surface of a unit sphere (r0 = 1), a
cost function J measures total potential energy as the sum of
Euclidian distances between nodes [7, 11],

J =

P∑
i=1

P∑
j=i+1

1

‖pi − pj‖2
, (7)

where pi = [θi φi]
T are the spherical coordinates of the ith

node. The optimization problem can then be formulated as

minimize
P∑
i=1

P∑
j=i+1

d(θi, φi, θj , φj)

subject to 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, (8)

where

d(θi, φi, θj , φj) =((cos(φi) sin(θi)− cos(φj) sin(θj))
2

+ (sin(φi) sin(θi)− sin(φj) sin(θj))
2

+ (cos(θi)− cos(θj))
2)−1/2. (9)

Table 1 lists all minimum energy configurations for square
numbers, powers of 2 and multiples of 8 up to 64 nodes.
The five rightmost columns are costs associated with Crite-
ria 1–4. The condition number measures the invertibility of
a P × (N + 1)2 matrix of spherical harmonics Y m

l (Ω) as
a ratio of largest to smallest singular values, measuring the
impact of the angular configuration on (6) for order N . E is

P Poly. Name Jopt Cond. (N ) |E| |V| Excess
4 Tetrahedron 3.67 1 (1) 1 1 0
6 Octahedron 9.99 1 (1) 1 1 2
8 Square

Antiprism
19.68 1.06 (1) 3 3 4

9 Triaugmented
Triang. Prism

25.76 1.42 (2) 3 4 0

12 Icosahedron 49.17 1 (2) 1 1 3
16 – 92.91 1.58 (3) 4 2 0
24 Snub Cube 223.35 1.07 (3) 4 3 8
25 – 243.81 2.22 (4) 20 25 0
32 – 412.26 1.04 (4) 2 2 7
36 – 529.12 3.36 (5) 18 20 0
40 – 660.68 1.19 (5) 5 7 4
48 – 968.71 1.11 (5) 6 5 12
49 – 1011.56 3.32 (6) 20 49 0
56 – 1337.09 1.34 (6) 19 56 7
64 – 1765.81 6.28 (7) 13 20 0

Table 1. Properties of minimum energy sphere distributions.

the set of unique edge lengths (rounded to the nearest 1% of
the radius) and V the set of unique types of vertex with an-
gles rounded to the nearest 0.1◦. Excess is P − (N + 1)2 for
N = arg max

N
{(N + 1)2 ≤ P}.

As expected, the uniform distributions P = {4, 6, 12}
yield unity for condition number, |E| and |V|, with P = 4 be-
ing used extensively for A-format microphones. The icosahe-
dron is less desirable due to its Excess cost. The P = 25 case,
which would be ideal for harmonic order N = 4, is highly
nonuniform with 20 unique edge lengths and 25 unique ver-
tex pieces, making its fabrication impractical. All other cases,
particularly square numbers, are similarly unattractive.

Cases P = {16, 32} are close approximation to the hex-
akis truncated tetrahedron and pentakis dodecahedon respec-
tively [6]. Both fulfill Criteria 1–3 but P = 32 does not fulfill
Criterion 4 with an excess of 7. Only case P = 16 fulfills
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Fig. 3. Full Assembly viewed from the front.

Criteria 1-4, yielding a maximum harmonic order N = 3,
and was chosen for the forthcoming design.

2.3. Completing the Design

The 16-node design in Fig. 2 consists of 12 vertices joining
5 edges (v5) and 4 vertices joining 6 edges (v6) that lie in a
tetrahedral distribution, with 42 edges and 28 faces in total.
Edges and vertices are color coded to indicate similar types.
The solution has been aligned so that a v6 vertex lies on the
positive z-axis. At the very bottom lies an equilateral triangle
aligned parallel to the x−y plane that helps fulfill Criterion 5.

Fig. 3 shows a completed assembly with an inner sphere
of radius 42 mm and outer 420 mm. The design was assem-
bled from machined carbon fiber edge rods that mate with an
interference fit into sleeves on 3D printed vertices. Features
were designed to be small for acoustic transparency (Crite-
rion 6). Modular microphone ‘cages’, perforated with holes
for the front and back ports, accept a 9.7mm electret cardioid
microphone capsule (Criterion 7) whose cable exits through a
hole in the rear of the vertex. The final Criterion is the abil-
ity to suspend spheres concentrically. An elasticated hook is
mounted under tension to the edges of the lower equilateral
triangle and three of the six hexagonal edges around the ver-
tex lying on the z-axis.

3. EVALUATION

The example 42 mm and 420 mm radius 2x16-cardioid de-
sign is compared with a 32-microphone 42 mm rigid omni-
directional design. The unconstrained least-squares solution
in (6) yields increasing white noise gain with increased mode
strength, defined as [12]

WNG(ω) = 1/diag
{
ξ(ω)ξH(ω)

}
, (10)

and is a measure of the gain applied to uncorrelated white
noise in the capture apparatus. The curves in Fig. 4 show
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Fig. 4. WNG for rigid omni and dual-radius cardioid designs.

white noise gain above unity with the proposed design down
to about 200 Hz. The effect of the outer and inner spheres can
be seen as the two sets of curves intersect to produce peaks
around 600 Hz and 6 kHz respectively. The 3rd order curves
do not lie precisely on top of one another due to nonunifor-
mity in the design, as reflected by the slightly elevated con-
dition number compared to the 32-microphone distribution.
The first order noise gain asymptotes to 18 dB due to the car-
dioid’s ability to measure 1st order modes by its sensitivity to
pressure gradients. The 32-channel array carries the advan-
tage of resolving 4th order components above ∼ 3 kHz. At
the third order, low frequency noise gains drop below unity
below 2 kHz, and are approximately 58 dB at 200 Hz. Below
these frequencies, only first order components are practical in
the rigid 32-microphone case.

4. CONCLUSION

A set of design criteria was proposed for practical open sphere
microphone array designs. It was shown that cardioid micro-
phones placed on spheres of multiple radii provide improved
low frequency white noise gain performance compared with
the same number of omnidirectional microphones on a rigid
sphere. Using near-uniform microphone distributions by min-
imizing the potential energy of a system of charged particles
on the unit sphere, 16- and 32-point distributions were high-
lighted as having good practical properties. An exemplary
case of a 42 mm and 420 mm dual radius open cardioid sphere
shows unit WNG down to 200 Hz, compared with 2 kHz for a
32-channel 42 mm radius rigid omnidirectional configuration.
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