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ABSTRACT
In this paper, we present a multiple-speaker direction of arri-
val (DOA) tracking algorithm with a microphone array that uti-
lizes the recursive EM (REM) algorithm proposed by Cappé and
Moulines. In our model, all sources can be located in one of a
predefined set of candidate DOAs. Accordingly, the received signals
from all microphones are modeled as Mixture of Gaussians (MoG)
vectors in which each speaker is associated with a corresponding
Gaussian. The localization task is then formulated as a maximum
likelihood (ML) problem, where the MoG weights and the power
spectral density (PSD) of the speakers are the unknown parameters.
The REM algorithm is then utilized to estimate the ML parameters
in an online manner, facilitating multiple source tracking. By using
Fisher-Neyman factorization, the outputs of the minimum variance
distortionless response (MVDR)-beamformer (BF) are shown to be
sufficient statistics for estimating the parameters of the problem
at hand. With that, the terms for the E-step are significantly sim-
plified to a scalar form. An experimental study demonstrates the
benefits of the using proposed algorithm in both a simulated data-
set and real recordings from the acoustic source localization and
tracking (LOCATA) data-set.

Index Terms— Speaker tracking, Recursive expectation-
maximization, LOCATA challenge

1. INTRODUCTION

Online speaker tracking is required in many applications, including
navigation, source separation and target acquisition. This task be-
comes challenging when multiple moving speakers are concurrently
active, as well as when additive inference sources are captured by
the microphone array.

In this paper we focus on the DOA estimation problem. In
the audio processing community, common DOA estimators are ba-
sed on the steered response power (SRP)-phase transform (PHAT)
algorithm [1] or the multiple signals classification (MUSIC) algo-
rithm [2]. However, these techniques are not optimal in the multiple-
speaker case.

In [3], the expectation-maximization (EM) algorithm was uti-
lized to estimate the DOAs of multiple static speakers with a mi-
crophone pair. Assuming a single dominant speaker in each time-
frequency (TF) bin, the interaural phase differences (IPDs) from all
TF bins were clustered into groups associated with a candidate spea-
ker. The DOA of the active speakers were estimated using the groups
with the highest probability. In [4], two REM versions were applied
to a multichannel extension of the model in [3]: one based on Tit-
terington recursive EM (TREM) [5] and the second on Cappé and
Moulines recursive EM (CREM) [6]. The model in this approach
does not directly address additive noise.

In [7, 8, 9], the phase-related feature vectors were substituted by
the raw short-time Fourier transform (STFT) observations. In addi-
tion, the noise (or reverberation) was implicitly modeled and there-
fore improved results were obtained in noisy scenarios. The obser-
vations were modelled as a mixture of high-dimensional complex-
Gaussian with zero-mean, and a spatial covariance matrix that re-
flects both the speech and the noise power spectral densities (PSDs).
In [8], speaker localization and separation procedures for the noisy
case were presented. It was shown that the PSDs of the candidate
speakers can be estimated in advance (prior to the application of EM)
from the output of an MVDR-BF.

In the current contribution, we extend [7, 8, 9] to address the dy-
namic scenario. For that, we first show that the E-step can be recast
in a scalar form, rather than a vector form, which results in a lower
computational burden necessary for online and real-time tracking
problems. By applying the Fisher-Neyman factorization [10], it is
shown that the MVDR-BF outputs can substitute the raw observa-
tion features and serve as a sufficient statistics for estimating the
parameters of the problem at hand. Next, a tracking procedure is
proposed by applying the CREM algorithm. Recursive equations for
the DOA probabilities and the candidate speakers PSD are derived,
which facilitates online DOA tracking of multiple speakers.

This proposed tracking algorithm was evaluated using both si-
mulated room impulse responses (RIRs) and real recordings from
the LOCATA data-set. Improved estimates of the speakers trajecto-
ries, compared with baseline methods, are demonstrated.

2. PROBLEM FORMULATION

In this section, the statistical model is formulated, and the associated
ML is stated.

2.1. Signal model

Consider a grid of candidate positions in the room P =
{p1, . . . ,pM}, where M = |P| is the number of candidates. Note
that, according to this model, the number of speakers is equal to the
number of grid points. As will be clarified below, the number of
actual speakers is always significantly lower than M .

The speech signals, together with an additive noise, are captured
by an array of N microphones. The nth microphone signal in the
STFT domain is given by:

zn(t, k) =

M∑
m=1

dm(t, k)gm,n(k)sm(t, k) + vn(t, k) (1)

where t = 0, . . . , T − 1 denotes the time index, k = 0, . . . ,K − 1
denotes the frequency index, gm,n(k) denotes the direct-path trans-
fer function from the speaker positioned at pm to microphone n
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(relative to the reference microphone arbitrarily chosen as microp-
hone #1), sm(t, k) denotes the speech signal uttered by a speaker at
grid pointm (as received by the reference microphone), and vn(t, k)
denotes the ambient noise. The indicator signal dm(t, k) indicates
whether speaker m is active in the (t, k)th TF bin:

dm(t, k) =

{
1, if speaker m is active in TF bin (t, k)

0, otherwise
. (2)

Note that, according to the sparsity assumption [11], the vector
d(t, k) = vecm{dm(t, k)} ∈ {e1, . . . , eM}, where em is a “one-
hot” vector, namely equals ‘1’ in its mth entry, and zero elsewhere.
The N microphone signals can be concatenated in a vector form:

z(t, k) =

M∑
m=1

dm(t, k)gm(k)sm(t, k) + v(t, k),

where z(t, k), gm(k) and v(t, k) are the respective concatenated
vectors. The transfer function of the direct-arrival is given by:

gm,n(k) = exp

(
−ι2πk

K

τm,n
Ts

)
(3)

where Ts denotes the sampling period, and τm,n denotes the time
difference of arrival (TDOA) between position pm and microphone
n. This TDOA can be calculated in advance from the predefined grid
points and the array constellation.

2.2. Statistical model and the ML problem

Both the speech and the noise signals are modeled as zero-mean
complex-Gaussian random vectors:

v(t, k) ∼ N (v(t, k),0,Φv(k)) , (4)
sm(t, k) ∼ N (sm(t, k), 0, φs,m(t, k)) . (5)

The probability density function (p.d.f.) of the indicator vector
d(t, k) is given by:

fd(d(t, k)) =

M∑
m=1

dm(t, k)ψm (6)

where ψm is the a priori probability of the activity of a speaker at
the mth position, and

∑M
m=1 ψm = 1. Because the actual number

of speakers is usually lower than the number of candidates, most of
ψm will be close to zero [12]. Following the sparsity assumption,
the observation vectors are distributed as a mixture of M zero-mean
complex-Gaussians:

fz(z(t, k)) =

M∑
m=1

ψmN (z(t, k),0,Φz,m(t, k)) (7)

where the PSD matrix of each Gaussian is given by:

Φz,m(t, k) = gm(k)gHm(k)φs,m(t, k) + Φv(k), (8)

and the speech and noise vectors are assumed to be statistically inde-
pendent. Finally, by assuming TF bin independency, we obtain the
p.d.f. of the entire set of observations:

f(z;θ) =
∏
t,k

M∑
m=1

ψmN (z(t, k),0,Φz,m(t, k)) (9)

where z = vect,k {z(t, k)}, and θ is the set of unknown para-
meters, namely θ =

[
ψT ,φs

T
]T

with ψ = vecm {ψm} and
φs = vect,k,m {φs,m(t, k)}. Note that Φv(k) is assumed to be
known in advance, or can be estimated with no speech activity. The
ML problem can readily be stated as: θ̂ = argmaxθ log f(z;θ).

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the maximum likelihood estimator (MLE)
of the θ. In the following, we omit the frequency index k for brevity.

3.1. Fisher-Neyman factorization

According to the Fisher-Neyman factorization theorem [10], the
p.d.f. of z (given that the dominant speaker is located at pm) can
be factorized as:

N (z(t),0,Φz,m(t)) =

N (ŝm,MVDR(t), 0, φs,m + φv,m)h (z(t)) , (10)

where ŝm,MVDR(t) ≡ wH
mz(t) is an estimate of the speech using

the MVDR-BF, wm =
Φ−1

v gm

gH
mΦ−1

v gm
, which constitutes a sufficient

statistic for estimating the speech PSD φs,m(t) given the observa-
tions z(t). The φv,m ≡ 1

gH
mΦ−1

v gm
parameter is the PSD of the

residual noise at the output of the MVDR-BF. The function h (z(t))
is independent of φs,m(t), and is given by:

h (z(t)) =
φv,m
πN−1

exp

(
−zH(t)Φ−1

v z(t) +
|ŝm,MVDR(t)|2

φv,m

)
.

(11)

3.2. Localization using Batch EM

In this section we review the results presented in [8] using the fac-
torization (10). We will define dm(t, k) as the hidden data. The
auxiliary function of the EM algorithm is given by:

Q(θ|θ(`−1)) = E
{

log (f(z,d;θ)) |z;θ(`−1)
}

(12)

where the joint p.d.f. of the observations and the hidden data (the
complete data) is given by:

f(z,d;θ) = f(z|d;φs)f(d;ψ) =∏
t,k

M∑
m=1

ψmdm(t)N (z(t), 0,Φz,m(t)). (13)

The E-step is then given by:

d̂(`−1)
m (t) = E

{
dm(t)|z(t);θ(`−1)

}
=

=
ψ

(`−1)
m N (z(t),0,Φ

(`−1)
z,m (t))∑

m ψ
(`−1)
m N (z(t),0,Φ

(`−1)
z,m (t))

, (14)

and the M-step by:

ψ̂(`)
m =

∑
t,k d̂

(`−1)
m (t, k)

T ·K (15)

and:
φ̂s,m(t, k) = |ŝm,MVDR(t, k)|2 − φv,m(k). (16)
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Note that, since φ̂s,m is independent of the outcome of the E-step, it
can be calculated prior to the application of the EM iterations.

We will now simplify the E-step term in (14) to reduce the com-
putational complexity and to gain some insights. Using the factori-
zation in (10 the estimate of the indicator is given by:

d̂(`−1)
m (t) =

ψ
(`−1)
m Tm(t)∑

m ψ
(`−1)
m Tm(t)

. (17)

Following several algebraic steps1 we obtain:

Tm(t) =
1

SNRpost
m (t)

exp
(
SNRpost

m (t)− 1
)

(18)

where SNRpost
m (t) =

|ŝm,MVDR(t)|2
φv,m

is the posterior signal-to-noise
ratio (SNR) of a signal from the mth candidate position. Note
that Tm(t) is the likelihood ratio test (LRT), as presented in [13,
Eq. (14)], where we have substituted the a priori SNR with its in-
stantaneous estimator φ̂s,m(t)

φv,m
using (16). The LRT tests whether

z(t) is either associated with the m-th candidate speaker or with a
noise-only candidate position. Using this interpretation of Tm(t),
the association of each TF bin with each speaker candidate m (as
indicated in (17)) is proportional to the corresponding LRT result
and the prior probability of the mth speaker, as deduced from the
previous iteration, ψ(`−1)

m .

4. RECURSIVE EM

In this section, we will apply the CREM algorithm, presented in [6],
to the problem at hand. To allow for a smooth estimate of the speech
PSD, we assume here that φs is time-independent, keeping in mind
that the (smooth) time-variations of the speech PSD will be naturally
obtained by the application of the CREM. In the CREM scheme, the
iteration index ` is substituted by the time index t, and the recur-
sive auxiliary function is based on smoothing of the instantaneous
auxiliary function over time:

QR(t;θ) = (1− γ)QR(t;θ) + γQ(θ|θ(t− 1)) (19)

where QR(t;θ) is the recursive auxiliary function, and Q(θ|θ(t −
1)) is the instantaneous auxiliary function given only the current ob-
servations. The M-step is obtained by maximizing QR(t;θ) w.r.t θ.
Using (12) and (13) the recursion in (19) boils down to:

ηm(t) = (1− γ)ηm(t− 1) + γd̂m(t), (20a)

ξm(t) = (1− γ)ξm(t− 1) + γd̂m(t) |ŝm,MVDR(t)|2 . (20b)
Maximizing QR(t;θ) with respect to ψm and φs,m yields the M-
step:

ψ̂m(t) =

∑
k ηm(t, k)

K
(21)

φ̂s,m(t, k) =
ξm(t, k)

ηm(t, k)
− φv,m(k). (22)

A recursive estimator of d̂m(t, k) can be obtained from the CREM
by substituting ψ̂(l−1)

m with ψ̂m(t−1) in (17) and by using a smoot-
hed estimator for the a priori SNR in the LRT expression:

Tm(t) =
1

1 + SNRpri
m(t− 1)

exp

(
SNRpri

m(t− 1)SNRpost
m (t)

1 + SNRpri
m(t− 1)

)
(23)

1see supplementary material in www.eng.biu.ac.il/gannot/
publications/conferences-and-workshops-proceedings/
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(a) AUC vs. SNR for the proposed method and for the reference
methods.
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(b) An example probability map for SNR = 25 dB and sources
velocities ±15 deg

s , respectively. The dashed line is the ground
truth DOA. The obtained AUC ≈ 0.96.

Fig. 1: Experimental results for simulated data.

with SNRpri
m(t − 1) =

φ̂s,m(t−1)

φv,m
. Note the significant differences

between (23) and (18). While the former does not take into account
the smoothness of the speech PSD, and hence uses only an instanta-
neous SNR estimate; the latter takes the smoothness of the PSD into
account through the recursively estimated a priori SNR estimate. We
also note that the a priori SNR estimate obtained here by the CREM
procedure is very different from the estimators presnted in [13].

4.1. Practical considerations

The original CREM uses one smoothing parameter γ. We note that
in our problem, the two parameters exhibit different time behavi-
ors: while ψ, which is related to the source position, is slowly time-
varying, the speech PSD φs(t) is rapidly changing. Therefore, in
our experiments, we used two different smoothing parameters: γψ
and γφs . Accordingly, for estimating ξ(t), we always used γφs ≈ 1.
For ηm(t), we used two estimators: the first one used γφs ≈ 1 to
obtain an estimate for φs(t) in (22), and the second used γψ � 1 to
obtain an estimate of ψ in (21).

5. PERFORMANCE EVALUATION

The proposed algorithm was evaluated using two data-sets: simu-
lated time-varying scenes generated by a signal generator2 and real
multichannel audio recordings from the LOCATA challenge [14].

5.1. Algorithm settings and baseline methods

The parameters used in the implementation of our algorithm are as
follows: 1) signals re-sampled to 16 kHz; 2) STFT frame-length
64 ms with no overlap; 3) frequency band used for localization
1 − 6 KHz; 4) smoothing parameters γψ = 0.1, γφs = 0.8; 5)
grid of possible azimuth angle between −900 and 900, with re-
solution 2◦ and 5◦ for the simulated data and LOCATA data-set,
respectively; and 6) the probabilities were uniformly initialized to

2www.audiolabs-erlangen.de/fau/professor/habets
/software/signal-generator
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ψm(0) = 1
M
, ∀m. The noise PSD matrix was estimated using

speech absence segment at the beginning of the recording, annotated
manually for the LOCATA data-set.

The proposed method provides a probability map as a function
of time and not directly the DOA estimates. For estimating the
actual trajectory of the speakers, one should use a peak-selection
method. To circumvent the effects of the peak-selection algorithm,
we have chosen to calculate instead the receiver operating charac-
teristic (ROC) curve for each frame and to use the area under the
curve (AUC) as a measure. For calculating the ROC curve, all de-
tections in the range around the true DOA, specifically DOAgt ± 3◦,
are considered true positive. The final score is obtained by time-
averaging of the per-frame AUC, excluding noise-only frames. For
baseline methods, we used both the MUSIC algorithm [2], as provi-
ded by the challenge, and the PRP-REM algorithm [4] with the same
smoothing parameter, and with fixed variance for all the Gaussians,
σ = 0.1. For a fair comparison, the MUSIC results were similarly
smoothed and normalized to obtain a pseudo-distribution.

5.2. Evaluation using simulated data

In the simulated scenario, clean anechoic speech signals were drawn
from the TIMIT database [15], where speech utterances of the same
speaker were concatenated to obtain a 5 s long speech signal. The
speakers were randomly selected from 26 different speakers. To si-
mulate moving sources, we used the signal generator, as mentioned
above. The room dimensions were set to 6 × 6 × 6.1 m with rever-
beration time T60 ∼ 200 ms. The signals were captured by an eight-
microphone linear array with inter-distances of [3, 3, 3, 8, 3, 3, 3] cm
from one another, together with an additive spatially-white noise
with various SNR values.

Thirty Monte-Carlo trials, simulating two moving sources sce-
narios, were examined. In each scenario, the initial DOAs of the
speakers were set to 60◦ and 100◦, respectively. The sources moved
from their initial positions in a circle with a radius of 1 m around
the array center and with angular velocity randomly selected from a
uniform distribution in the range [−15 : 15] deg

s to obtain random
trajectories. We first examined the influence of γφs on the obtained
localization score. We have noticed that the scores are insensitive to
the smoothing parameter value in the range 0.6 < γφs < 0.9. We
have therefore selected γφs = 0.8 for all experiments.

The results of the simulation study are depicted in Fig. 1. It
is evident from Fig. 1(a) that the proposed algorithm outperforms
the PRP-REM algorithm [4] by approximately 5% for 0 dB SNR,
and that their performance converges as the SNR level increases. It
is also demonstrated that the proposed method significantly outper-
forms the MUSIC algorithm. Moreover, we note that the proposed
method is computationally more efficient than the PRP-REM, and
that it additionally provides the speech PSD estimate that may be
useful for further processing, e.g. in separation tasks [8]. In Fig. 1(b)
we depict the probability map ψ̂m of one the trials, clearly demon-
strating the tracking capabilities of the proposed method.

5.3. Evaluation on LOCATA data-set

The data for the LOCATA challenge [14] were recorded in a room
of size 7.1 × 9.8 × 3 m with a reverberation time T60 ∼ 0.55s.
We tested our algorithm on Task #3, which is a recording of a single
moving speaker, and Task #4, which is a recording of two moving
speakers. We used the data recorded by the linear array (DICIT). We
used the first recording (Recording #1) of each task. As a reference
method, an implementation of the MUSIC algorithm was provided,

as well as ground-truth location of the speakers. We evaluate our al-
gorithm on the azimuth estimation only. The results of the LOCATA
test are shown for the single source tracking task in Fig. 2 and for
the two source tracking task in Fig. 3. The proposed method cle-
arly outperforms MUSIC in both tasks, as can be deduced from the
inspection of the probability maps and from the score values. The
differences are more pronounced in the two speakers case, for which
the MUSIC algorithm performs poorly.
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(a) Proposed method.
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(b) PRP-REM algorithm [4]

Fig. 2: Probability maps for the LOCATA challenge (Task #3 - sin-
gle moving speaker). The dashed line is the ground truth azimuth,
as provided with the LOCATA database. AUC ≈ 0.95 for both met-
hods.
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(a) Proposed method.
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(b) MUSIC.

Fig. 3: Probability maps for the LOCATA challenge (Task #4 - two
moving speakers). The dashed line is the ground truth azimuth, as
provided with the LOCATA database. AUC= 0.82, 0.69 for the pro-
posed method and for the MUSIC algorithm, respectively.

6. CONCLUSIONS

A computationally efficient tracking algorithm, based on the CREM
procedure, was proposed. An estimate of the speech presence pro-
bability in each candidate DOA is calculated from the respective
MVDR-BF output in the E-step. In the M-step, both the direction
and the speech PSD are recursively estimated. An experimental
study demonstrates the advantage of the proposed algorithm compa-
red to baseline methods, on both simulated data and recorded data.
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