
A DOUBLE-CROSS-CORRELATION PROCESSOR
FOR BLIND SAMPLING RATE OFFSET ESTIMATION IN ACOUSTIC SENSOR NETWORKS

Aleksej Chinaev, Philipp Thüne, Gerald Enzner
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ABSTRACT

Signal synchronization in wireless acoustic sensor networks re-

quires an accurate estimation of the sampling rate offset (SRO) in-

evitably present in signals acquired by sensors of ad-hoc networks.

Although some sophisticated methods for blind SRO estimation have

been recently proposed in this very young field of research, there

is still a need for the development of new ideas and concepts es-

pecially regarding robust approaches with low computational com-

plexity. We therefore propose a novel time-domain method based

on the calculation of a double-cross-correlation function in this con-

tribution. Experimental evaluation of the introduced approach in a

challenging acoustic environment and comparison with a state-of-

the-art frequency-domain method confirms the high accuracy and

low computational load of the proposed technique.

Index Terms— Wireless acoustic sensor networks, Blind sam-

pling rate offset estimation, Wideband correlation processing

1. INTRODUCTION AND RELATION TO PRIOR WORK

Audio acquisition and signal processing via wireless acoustic sensor

networks (WASN) may exhibit advantages compared to traditional

microphone arrays since global sampling of the sound field generally

results in a higher quality recordings [1]. The specific infrastructure

of WASN for distributed sensing and classification of sound, how-

ever, requires new attention in order to meet the application-specific

requirements of network self-calibration [2, 3], sound source local-

ization [4–6], acoustic signal enhancement [7,8], and acoustic scene

classification [9–11]. Thus, sensor signals of ad-hoc networks have

to be synchronized before their joint signal processing can be ac-

complished successfully. Commonly, time synchronization of ac-

quired signals is performed by digital-to-digital arbitrary sampling

rate conversion (ASRC) [12–15], which requires an estimation of

SRO between sensor clocks.

A robust SRO estimation in WASN is a challenging task that

often needs to be executed in a blind way by having access only

to asynchronous signals without using any additional reference in-

formation [16]. Blind SRO estimation can be carried out either in

the short-time Fourier transform (STFT) domain [16–21] or in the

time domain [22, 23]. While approaches from [16, 19, 22] employ a

time consuming exhaustive search over a grid of predefined SRO val-

ues, more efficient but still computationally intensive iterative pro-

cedures are used in [17, 21]. Further, ASRC methods are readily de-

ployed in SRO estimation in order to obtain more precise estimates

[16,18,19,21]. While frequency-domain approaches often make use

of the coherence function calculated from the cross power spectral

density, estimators in the time domain employ a cross-correlation

function in the estimation procedure. In our contribution, we de-

velop a novel approach for blind SRO estimation by introducing a

double-cross-correlation function that can be used for robust, pre-

cise and low-cost SRO estimation.

The contribution1 is organized as follows: Buildung upon pre-

liminaries introduced in Sec. 2, a double-cross-correlation processor

is proposed in Sec. 3. After comprehensive experimental evaluation

described in Sec. 4, conclusions are drawn in Sec. 5.

2. PRELIMINARIES

Assuming a coherent speech source signal s(t) spread out in a rever-

berant setting and acquired by two sensors of an ad-hoc network, the

respective microphone signals are given by

xm(t) = hm(t) ∗ s(t) + vm(t) , (1)

where m ∈ {1, 2} is the microphone index, t the continuous time,

hm(t) an acoustic impulse response between the source and the m-

th sensor, vm(t) a spatially uncorrelated noise of them-th sensor and

∗ denotes linear convolution [23]. The discrete-time signals xm[nm]
result from time-sampling of the respective continuous-time signals

xm(t) sampled at slightly different sampling rates fs,m via

xm[nm] = xm(tm)|tm(nm)=nm·Tm+dm , (2)

where nm ∈ Z is a discrete-time index, Tm = 1/fs,m a sampling

time period and dm ∈ R a real-valued delay in sampling start of the

m-th sensor node. Considering microphone m = 1 without any loss

of generality as the node with the reference sampling rate fs,1 = fs,

a sampling rate offset ǫ ∈ R of the second sensor node can be defined

as ǫ = fs,2/fs − 1 and is assumed to be time-invariant for the scope

of this publication.

As a result of asynchronous sampling in autonomous nodes, the

sampling times t1(n1) and t2(n2) for the same indices (i.e., n1 =
n2 = n) spread out increasingly across time. In order to describe

this divergence across time, an accumulating time delay (ATD) can

be defined as follows

δs(n) =
t1(n)− t2(n)

T2
= ε · n+

d1 − d2
T2

, (3)

where subscript ’s’ indicates sample-wise signal processing. Ac-

cording to (3), δs(n) grows linearly with time index n for a time-

invariant SRO ε, meaning that a difference of consecutive ATD val-

ues δs(n) − δs(n − 1) = ε can provide a foundation for the SRO

estimation proposed in the following.

In frame-oriented signal processing, an ATD δ(ℓ) for every sig-

nal frame ℓ ∈ {1 . . . L} can be defined as δs(n) evaluated at discrete

1This work has been supported by Deutsche Forschungsgemeinschaft

(DFG) under grant EN 869/3-1 within the Research Unit FOR2457 “Acoustic
Sensor Networks”.

641978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



t− d

T1 2T1 3T1 4T1 5T1 6T1 7T1 8T1 9T1

T2 2T2 3T2 4T2 5T2 6T2 7T2 8T2 9T2 10T2 11T2

n1

n20

0

0

1

1

2

2

4

4

3

3

5

5

6

6

7

7

8

8 9

9 10 11

δ(1) δ(2) δ(3) δ(4) · · ·

Fig. 1. Timing diagram with sampling times tm(nm) for corre-

sponding indices nm from (2) and with frame ATDs δ(ℓ) from (4)

for ε = 1/4, K = 4, B = 2 and d1 = d2 = d.

timenc(ℓ) corresponding to the center of the ℓ-th frame. Since an es-

timation of dm is beyond the scope of this contribution, d1 = d2 = d
is assumed for further discussion. Under this assumption, the frame

ATD δ(ℓ) = δs(nc(ℓ)) can be calculated with (3) as

δ(ℓ) = ε · nc(ℓ) = ε ·

(

B · (ℓ− 1) +
K − 1

2

)

, (4)

where K is the data frame size and B the accumulation time (also

known as frame shift). A timing diagram with sampling times

tm(nm) and corresponding indices nm from (2) and with respective

frame ATD values δ(ℓ) from (4) is shown in Fig. 1.

When asynchronous signals x1[n] and x2[n] are acquired, the

presence of SRO effectively results in a temporal stretching of the

wave form. By frame-oriented signal processing, the input signals

xm[n] are split into overlapped windowed signal frames

xm,ℓ[k] = w[k] · xm[(ℓ− 1) ·B + k − 1] , (5)

with an analysis window w[k] and a subindex k ∈ {1 . . . K}. In

this case, the aforementioned signal stretching produces a drift δ(ℓ)
between corresponding signal segments x1,ℓ[k] and x2,ℓ[k]. To esti-

mate δ(ℓ) from x1,ℓ[k] and x2,ℓ[k] in time domain, the maximization

of a cross-correlation function (CCF) is often recommended [24],

which can be defined as

φ12(n, υ) = E {X1[n] ·X2[n+ υ]} , (6)

where E denotes the expectation operator, Xm[n] are random pro-

cesses of the corresponding signals xm[n] and υ is a lag index. Note,

φ12(n, υ) is modelled here as a time-variant statistic of the second

order moving with time n over the lag-axis υ with a constant ’veloc-

ity’ ε according to (3). Because of the finite observation time within

one signal frame, φ12(n, υ) can only be estimated from signal seg-

ments of the ℓ-th frame via

φ̂12(nc(ℓ), υ) =

K
∑

k=1

x1,ℓ[k] · x2,ℓ[k + υ] , (7)

where υ ∈ {−Υ, . . . ,Υ} is a lag index of the CCF with a maximum

lag index 0 < Υ ≤ K − 1. However, a straightforward estimate

of the frame ATD δ̂(ℓ) calculated from the CCF of a single frame

φ̂12(nc(ℓ), τ ) via maximization seems to be a very challenging task,

if speech is used as stimulus in a reverberant environment with a big

distance between acoustic nodes – a scenario often encountered in

wireless acoustic sensor networks.

3. A DOUBLE-CROSS-CORRELATION PROCESSOR

Similar to the sample-wise model (3), a difference of consecutive

ATDs (called also ATD step) in the frame-oriented model (4) is time-

invariant, i.e.,

δ∆ = δ(ℓ)− δ(ℓ− 1) = B · ε . (8)

As one can see, the ATD step δ∆ is directly linked with the underly-

ing SRO value and, consequently, is of great interest for blind esti-

mation of time-invariant SRO assuming that an estimate of δ∆ from

the observed signals xm[n] is available.

The proposed double-cross-correlation processor (DXCP) aims

at a robust estimation of δ∆ based on a calculation of a second CCF

defined on the subsequent CCFs from (6) as follows:

ψ12(λ) = E {Φ12(n, υ) · Φ12(n−B, υ + λ)} , (9)

where Φ12(n, υ) is a random process of φ12(n, υ) and λ a lag in-

dex of the second CCF. In contrast to the time-variant first CCF

φ12(n, υ) from (6), ψ12(λ) is modelled as a time-invariant stationary

statistic of the fourth order, since δ∆ is assumed to be time-invariant.

In an application, the second CCF ψ12(λ) can be estimated from re-

alizations of the first CCF calculated via (7) as

ψ̂12(ℓ, λ) =
Υ
∑

υ=−Υ

φ̂12(nc(ℓ), υ) · φ̂12(nc(ℓ− 1), υ + λ) (10)

for lag index λ ∈ {−Λ, . . . ,Λ} with a maximum lag index

0 < Λ ≤ 2Υ. Further, ψ̂12(ℓ, λ) is normalized to its maximum

value over lag λ via

ψ̃12(ℓ, λ) =
ψ̂12(ℓ, λ)

maxλ

(

ψ̂12(ℓ, λ)
) , (11)

which turns out to be useful for robust SRO estimation.

Since the second CCF ψ12(λ) is meant to be ergodic, its nor-

malized estimates ψ̃12(ℓ, λ) can be averaged. The average across all

past estimates 1
ℓ−1

∑ℓ

ℓ′=2 ψ̃12(ℓ
′, λ) can be stated recursively as

ψ̄12(ℓ, λ) =
1

ℓ− 1
· ψ̃12(ℓ, λ) +

ℓ− 2

ℓ− 1
· ψ̄12(ℓ− 1, λ) (12)

for ℓ ≥ 2. Note, averaging (12) aims at achieving a more pro-

nounced maximum in the resulting averaged normalized second

CCF (ANS-CCF) and in consequence a better estimate of δ∆.

In order to estimate a real-valued δ∆ from the averaged second

CCF ψ̄12(ℓ, λ) calculated only for integer values of lag index λ, we

propose to use a second-order polynomial

f(λp) = a(ℓ) · λ2
p + b(ℓ) · λp + c(ℓ) , (13)

with a real-valued argument λp for interpolation through three

supporting points ψ̄12(ℓ, λ
sp
p ) for λsp

p ∈ {λmax(ℓ) − 1, λmax(ℓ),
λmax(ℓ) + 1} with an integer-valued

λmax(ℓ) = argmax
λ

ψ̄12(ℓ, λ) . (14)

The single maximum point λp,max(ℓ) of f(λp) calculated in the ℓ-th

frame is then a desired estimate of the ATD step δ̂∆(ℓ), from which

an SRO estimate ε̂(ℓ) can be simply deduced via (8), i.e.,

ε̂(ℓ) =
δ̂∆(ℓ)

B
= −

b(ℓ)

2 ·B · a(ℓ)
. (15)
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The proposed DXCP for a blind SRO estimation has 4 parame-

ters to be set, K, B, Υ, and Λ, and can be summarized in the fol-

lowing five processing steps executed for every signal frame ℓ ≥ 1:

1. Windowed framing of input data: xm[n] → xm,ℓ[k] as in (5)

2. Calculation of first CCF φ̂12(ℓ, υ) with (7)

3. Saving φ̂12(ℓ, υ) as φ̂12(ℓ− 1, υ) for the next frame

For ℓ = 1, skip steps 4 and 5

4. Computation of second CCF ψ̂12(ℓ, λ) with (10), its normal-

ization ψ̃12(ℓ, λ) with (11) and its recursive averaging with

(12) resulting in ψ̄12(ℓ, λ)

5. Parabolic interpolation (13) through points ψ̄12(ℓ, λ
sp
p ) for

λsp
p ∈ {λmax(ℓ)−1, λmax(ℓ), λmax(ℓ)+1} with λmax(ℓ) from

(14) and computation of δ̂∆(ℓ) and ε̂(ℓ) estimates with (15)

4. EXPERIMENTAL EVALUATION

The evaluation section is split into three parts. While in the first part

some properties of the proposed DXCP method are illustrated, the

second part presents optimization of the data frame size parameter

K. In the third part, the performance of the DXCP method is com-

pared to the state-of-the-art average coherence drift (ACD) approach

for blind SRO estimation [18]. Note, the accumulation time of the

proposed DXCP method was set in all experiments to B = K/2.

Data for experimental evaluation were generated by simulation

of an acoustic enclosure of size 4m × 5m × 3m with different re-

verberation times T60 = {100, 500, 1000}ms. Assuming a single

static speaker placed at position (1, 2, 1.8) or (1, 2.5, 1.8) and two

microphones at positions (3, 4, 1.5) and (3, 1, 1.5) with a distance

between microphones of 3 meters. Clean speech signals for male

and female speakers are taken from the TIMIT database [25] and

concatenated to a total length of one/three minutes each. The room

impulse responses between the speakers and the microphones are

generated using the image source method [26]. As spatially un-

correlated microphone noise, white and babble noise signals from

the signal processing information base (SPIB) data [27] are used to

generate noisy signals at different signal-to-noise ratio (SNR) val-

ues of {10, 20, 30}dB. In all experiments, the reference sampling

rate fs = 16 kHz is used. The second microphone signal is resam-

pled for SRO values ε ∈ {0, 20, 40, 60, 80, 100}ppm by a highly

accurate SINC method described in [28], which uses the Hann win-

dowed sinc function of length Nw = 513 samples with signal-to-

interpolation-noise ratio (SINR) of ∼ 110 dB [29, 30].

4.1. Insight into functionality of the proposed DXCP

In order to give a deeper insight into the functionality of the proposed

DXCP method, typical CCFs are presented in Fig. 2 calculated from

input signals of 3 minutes length for the source position (1, 2, 1.8).
The signals are generated for T60 = 1000 ms and distorted by bab-

ble noise at 10 dB. The second microphone signal exhibits an SRO

of ε = 60 ppm. And since the data frame size of the proposed DXCP

method was set here to K = 16 · 104, meaning calculation of the

first CCF with (7) over 10 seconds of input data justified later and

leading to an accumulation time of B = 8 · 104, a true value of ATD

according to (8) is in this experiment δ∆ = 4.8. The remaining

DXCP parameters were set here to Υ = 600 and Λ = 50.

The time behavior of the estimated first and the second normal-

ized cross-correlation functions φ̂12(nc(ℓ), υ) and ψ̃12(ℓ, λ) calcu-

lated by using (7) and (11) are depicted in Fig. 2 (a) and Fig. 2 (b),

respectively. Fig. 2 (a) confirms the assumed linear time drift of

the first CCF caused by the SRO, which produces wave pattern with
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Fig. 2. Example of the proposed DXCP in a challenging acoustic

environment: (a) Time drift of first CCF φ̂12(nc(ℓ), υ) from (7),

(b) Time course of normalized second CCF ψ̃12(ℓ, λ) from (11), (c)

Final averaged normalized second CCF ψ̄12(L, λ) from (12), (d) In-

terpolation by polynomial (13) with resulting δ̂∆(L) estimate.

many more or less pronounced maxima. The latter move with con-

stant velocity and accomplish an expected distance of 172.8 sam-

ples after 3 minutes. Since tracking of one of the maxima of the first

CCF seems to be a very challenging task in such demanding acous-

tic environments as in our experiments, the second CCF is proposed

to be used for an SRO estimation. As it is depicted in Fig. 2 (b),

the normalized second CCF shows a better pronounced maximum

compared to the first CCF and, even more important, does not ex-

hibit any systematic time drift allowing averaging over time. The re-

sult of averaging (12) over ψ̃12(ℓ, λ) calculated for all signal frames,

ψ̄12(L, λ), is depicted in Fig. 2 (c), whose maximum is located in the

vicinity of the true ATD value. A zoom into the polynomial interpo-

lation over the supporting points of ψ̄12(L, λ) is shown in Fig. 2 (d)

resulting in a good estimate δ̂∆(L) = 4.763.

4.2. Optimization of data frame size parameter K

The data frame size K is a crucial DXCP parameter, which has to

be set appropriately in order to support the SRO estimation. For

this reason, a numerical optimization of K is carried out on a de-

velopment data set generated for speaker position (1, 2.5, 1.8) with

T60 = 500ms. The development data set is created based on 100
clean speech signals of one minute length each distorted by white

microphone noise at different SNRs for various SRO values result-

ing in 30 hours of two-channel speech material in total. While the

parameter K is varied in the range {1 s, . . . , 19 s} · fs samples cor-

responding to signal segment lengths of {1, . . . 19} seconds, further

parameters are set to Υ = K − 1 and Λ = 50. As performance

measures, a mean µε and a standard deviation σε of the estimation

error ε̂− ε are used evaluated and depicted in Fig. 3.

According to Fig. 3 (a), the mean estimation error µε decreases

with increasing K values. Moreover, the absolute values of µε

grow with larger SRO values and the true SRO values are in general
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Fig. 3. Optimization of the data frame sizeK of the proposed DXCP

from Sec. 3 on the development data set: (a) mean µe, (b) standard

deviation σe of the estimation error ε̂− ε.

slightly underestimated. Note, the latter property was registered also

for some others SRO estimators [18, 21] and may be attributed to

incoherent components available in both microphone signals. Cal-

culation of CCFs over longer signal frame sizes ensures that these

signal components are averaged out. In contrast to µe, the standard

deviation in Fig. 3 (b) initially drops with K and slightly increases

for bigger data frame sizes especially for larger SRO values. As

observed in the experiments, the standard deviation of the proposed

estimator achieves its minimum in the vicinity of K = 10 s · fs
corresponding to ten seconds of input data for every signal frame.

Further, the evaluation reveals an important ability of the proposed

estimator to benefit from lower SRO, which is proved by smaller

values of µe and σe for ε → 0 ppm, if the data frame size is set to

values K > 5 s · fs. This feature enables the DXCP estimator to be

deployed in an iterative multi-stage fashion – a procedure recently

introduced in [16, 21]. The multi-stage technique is an iterative

procedure, where the SRO-affected signal is resampled (for com-

pensation of SRO value estimated in the previous iteration) before

the ’remaining’ SRO value is estimated in the next iteration leading

in the course of the iteration process to a more precise final SRO

estimate. The number of performed iterations I is equivalent here to

the number of SRO estimations taking place.

As a result of the parameter optimization, Kopt = 10 s · fs is

suggested as an appropriate choice for DXCP parameterization re-

sulting in an averaged mean estimation error and standard deviation

of 1 ppm for white microphone noise according to Fig. 3.

4.3. Comparison between the proposed DXCP and ACD

In order to compare the performance of the proposed DXCP method

with the ACD approach, a test data set is generated for speaker po-

sition (1, 2.5, 1.8) based on 40 speech signals (different from the

development data) of one minute length each, distorted by babble

microphone noise for different values of SNR and T60, as men-

tioned before. The ACD approach from [18] is implemented with

parameters recommended in [21]. Thus, the data frame size is set to

KACD = 3 · LW with a temporal distance between consecutive co-

herence functions of PACD = LW samples, where the Welch method

is used for the estimation of the coherence function with FFT size

LW = 213 and Welch shift DW = 210 [31]. The proposed DXCP is
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Fig. 4. RMSE values averaged over the test data set achieved by

ACD and DXCP approaches implemented in single- and in multi-

stage fashion for IACD ∈ {1, 2, 5} and IDXCP = {1, 2}, respectively.

implemented for K = Kopt, Υ = Kopt/4 and Λ = 50. Every SRO

estimator is implemented either in single- or in multi-stage fashion

according to [21] in combination with SINC resampling, which uses

the Hann-windowed sinc function of length Nw = 33.

While the precision of the estimators is measured on the test

data by means of a root mean squared error (RMSE), a realtime fac-

tor (RF) is further considered to quantify computational complex-

ity. The resulting RMSE and RF values averaged over the whole

test data set are given in Tab. 1. The numbers reveal that the ACD

method benefits strongly from the iterative multi-stage procedure, as

it was already noticed in [21], and achieves its best performance on

our test data for I = 5. In contrast to this, a single-stage imple-

mentation of the proposed DXCP obtains better accuracy than the

corresponding ACD realization. And since it further benefits from

the multi-stage technique, the proposed DXCP does not need more

than one resampling step to reach much better estimates than ACD

with 5 iterations (ACD-5). The RMSE values of both approaches

plotted over SRO values are depicted in Fig. 4. It is striking here that

estimation of large SRO values is a challenging task solved by the

proposed DXCP with fewer iterations compared to the ACD method.

Further, DXCP achieves better performance than the ACD approach

for lower SRO values. However in the case of SRO absence, both

approaches deliver similar RMSE values of ∼ 0.02 ppm. The re-

sulting RF values from Tab. 1 reveal a potential of the proposed

approach to be implemented on portable devices with small com-

putational power. Further, the proposed DXCP showed robustness

towards different values of T60 and SNR.

Estimator ACD DXCP

Iterations I 1 2 5 10 1 2

RMSE [ppm] 15.67 1.88 0.17 0.18 1.19 0.07
RF 0.005 0.128 0.498 1.115 0.006 0.131

Table 1. Averaged RMSE and RF values achieved on test data.

5. CONCLUSIONS

In this contribution, the double-cross-correlation processor DXCP

has been proposed for blind, robust and accurate SRO estimation

with reduced computational complexity. An experimental compari-

son of DXCP with a state-of-the-art ACD method in the STFT do-

main shows superiority of the proposed method in terms of better es-

timation accuracy at lower computational load. The latter is related

to a smaller SRO underestimation bias per iteration, which in turn

reduces the number of iterations required for a desired accuracy.
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