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ABSTRACT

This paper explores Deep machine listening for Estimating Speech
Quality (DESQ), which predicts the perceived speech quality based
on phoneme posterior probabilities obtained from a deep neural net-
work. The degradation of phonemes is quantified with the entropy-
based Gini measure that is compared to the mean temporal distance
(MTD) proposed earlier. Since long speech pauses might have a
large effect on the speech quality, we investigate if a voice activity
detection (VAD) has a beneficial or detrimental effect on the predic-
tive power of our model. The evaluation is performed by correlating
the model output and mean opinion scores (MOS) of normal-hearing
listeners who rated signals degraded by typical VoIP artifacts. While
the Gini-based measure and MTD result in very similar predictions
(with a lower computational cost for the Gini-measure), the VAD in-
creases performance from r = 0.87 to r = 0.91 which is higher
than three competing baselines (ITU-P.563, ANIQUE+, and SRM-
Rnorm).

Index Terms— subjective speech quality prediction, non-
intrusive, deep neural network, voice activity detection, automatic
speech recognition

1. INTRODUCTION

The perceived speech quality (SQ) of speech is an important measure
for the analysis of telecommunication channels and speech enhance-
ment algorithms. However, performing listening experiments to ob-
tain subjective ratings of the perceived quality of a presented speech
signal is time-consuming and expensive. Therefore, SQ models have
been proposed for predicting the mean opinion score (MOS) of lis-
teners from the acoustic stimulus [1]. Double-ended (or intrusive)
models such as Perceptual Evaluation of Speech Quality (PESQ) [2]
and Perceptual Objective Listening Quality Assessment (POLQA)
[3] produce accurate predictions, but require both the degraded and
the clean reference signal that are not available in most real-life sce-
narios.

To overcome this limitation, single-ended (or non-intrusive)
models have been proposed that only require the degraded signal.
Three single-ended algorithms that were shown to produce accurate
predictions of subjective SQ are the ITU standard P.563 [4], Audi-
tory Non-Intrusive Quality Estimation plus (ANIQUE+) [5], which
is a standard of the American National Standard Institute, and the
normalized speech-to-reverberation modulation energy ratio (SRM-
Rnorm) [6]. The ITU standard P.563 [4] estimates separate quality
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features from signal characteristics such as the signal-to-noise ratio
(SNR), linear prediction coefficients, and interruption indicators,
and combines them into the SQ prediction. ANIQUE+ combines
three intermediate measures of distortion, i.e., mute and non-speech
distortion, as well as frame distortion. The latter is quantified by
performing a spectral modulation analysis based on a perceptual
model. The SRMRnorm as originally proposed by Falk and Chan
[7] is computed by comparing the average energy in low modulation
frequency bands to the average energy in high modulation frequency
bands. A comprehensive overview of speech quality prediction
algorithms is presented in [8].

In this paper, we explore a model that is based on Deep machine
listening for Estimating Speech Quality (DESQ) as first introduced
in [9]. It is structurally identical to the Listening Effort prediction
from Acoustic Parameters (LEAP) model for predicting subjective
listening effort as proposed in [10]. The model is motivated by the
degradation of phoneme representations in suboptimal acoustic con-
ditions obtained from an acoustic model of an ASR system, specifi-
cally, from a DNN that is trained to predict phoneme probabilities (or
posteriorgrams, i.e., phoneme posterior probabilities over time). The
degradation of posteriorgrams is quantified with a performance mea-
sure, i.e., the mean temporal distance (MTD) originally proposed to
predict ASR error rates [11] and later on used for selecting the op-
timal stream in multi-stream ASR [12].The model output can then
be compared to mean opinion scores (MOS) from listeners. When
using an off-the-shelf training corpus (Aurora 4 [13]), the model out-
performed ITU P.563 and was on average on par with ANIQUE+ [9].
Based on this approach, the dependence between predictive power
and the number of training samples was explored for the TCD-VoIP
database [14] in related work [15], which has shown that this ap-
proach profits from training sets with at least 80 hours of speech. The
model is per se not suitable to predict degraded speech perception in
the presence of a competing speaker (since it is based on speaker-
independent ASR), but reached an average correlation of r = 0.87
for four other conditions. While this is a promising result, previ-
ous studies were limited to using one specific performance measure
(MTD, as mentioned above) which is a crucial building block of the
model and should bear potential for optimization. Second, the influ-
ence of speech pauses has not been taken into account, which might
also be crucial for the SQ prediction: The absence of speech dur-
ing pauses could cause severe problems for the DNN-based acoustic
model exploited here. On the other hand, noise-only segments allow
for a good estimate of the noise properties, which could be benefi-
cial for estimating the effect of noise during speech segments. Fi-
nally, the two baselines chosen in previous work have been success-
ful, but current state-of-the-art baselines based on machine learn-
ing have not been considered. In the current study, the resulting
research questions are addressed for the first time by exploring the
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Fig. 1. Illustration of the DNN-based speech quality prediction system which has been adopted from [10].

entropy-based Gini impurity, which has been suggested as a mea-
sure of sparseness before [16], and which could help to differenti-
ate between distinct, clear phoneme activations in clean speech and
degraded phonemes. The effect of speech pauses is investigated by
implementing a posteriorgram-based voice activity detection (VAD),
and the model performance is compared to the three baselines men-
tioned above, including the state-of-the-art SRMRnorm model.

The remainder of this paper is structured as follows: The gen-
eral concept of the ASR-based model is described in the next section
along with the ASR architecture, the corresponding training data,
and the SQ database. The results section presents model perfor-
mance in five different types of distortion. Discussion and summary
are presented in Sections 4 and 5, respectively.

2. METHODS

2.1. Speech quality prediction model

The model explored in this paper is illustrated in Figure 1. To obtain
model predictions, we first train a standard ASR system that com-
bines a feed-forward DNN (which serves as acoustic model) with a
hidden Markov model (HMM). The training procedure is described
in the next section in detail. We assume that phoneme posterior
probabilities from the DNN degrade in the presence of factors that
negatively affect speech quality; this degradation is quantified with
two performance measures (as described below). The DNN output
corresponds to context-dependent triphones, which are grouped to
42 monophones (including silence, spoken- and non-spoken-noise).
This allows to visualize the output (Figure 2), is computationally
cheaper, and produces similar results than using triphone activations
[17]. In contrast to the original model [9], the monophone posteri-
orgram is also used for a VAD: Frames with the highest posterior
probability for the silence class are interpreted as non-speech frames
and discarded from further analyses. This was motivated from incon-
sistent predictions for speech utterances with longer speech pauses,
which we hope to compensate by removing silence frames. Note that
a forward-run of the model does not require a decoding step with the
HMM or a word transcript, since it relies on the DNN output alone;
the HMM is therefore not shown in Fig. 1.

The two performance measures investigated in this work are
the MTD and the Gini measure: It assumes that signal degrada-
tions result in smeared phoneme activations of the DNN output, i.e.,
phoneme vectors should become more similar on average for noisy
phoneme representations. On the other hand, clean vector represen-
tations should have very distinct class activations, and vectors rep-
resenting different phonemes should be distant in vector space. The
measure is defined as

M(∆t) =
1

T −∆t

T∑
t=∆t

D(~p(t−∆t), ~p(t)) (1)

with phoneme vectors ~p and the symmetric Kullback-Leibler diver-
gence D. A scalar value is obtained by averaging values for ∆t in
the range of 350 ms to 800 ms as proposed in [9]. In the following,
the resulting scalar value is referred to as MTD.

The Gini impurity G is used in the classification and regression
tree (CART) algorithm [16]) and takes the sparseness of the temporal
frames into account. It is calculated according to

G(t) = 1−
M∑
i

pi(t)
2. (2)

where M is the number of phoneme classes, and pi is the ith entry
of the current phoneme probability vector ~p(t). To obtain positive
correlation values, we calculate the Gini purity G̃ given by

G̃(t) =

M∑
i

pi(t)
2. (3)

The Gini performance measure is the Gini purity averaged over each
utterance.

2.2. ASR system

In this study we use the best-performing DNN from [15], as we
investigated there different training procedures and the number of
training samples. The DNN was trained on 40-dimensional log-Mel-
spectral coefficients features with a splicing of ±5 frames using the
nnet1 recipe for the Aurora 4 database from the open source ASR
software Kaldi. The DNN had six layers, each with 2048 neurons,
a softmax output-layer and a sigmoid-nonlinearity. It was initial-
ized with a layer-wise Restricted Boltzmann Machine (RBM) pre-
training and fine-tuned with frame cross-entropy (CE) training. The
training targets for the fine-tuning were alignments for ≈ 3.400 tri-
phones created using a Gaussian Mixture Model - Hidden Markov
Model (GMM-HMM) system. With this fine-tuned DNN, new pho-
netic alignments were created on which the pre-trained network was
fine tuned again. This procedure is a standard approach for training
ASR models in Kaldi and has not been optimized for SQ prediction.

The WSJ1 speech corpus with the full SI284 set containing
37,416 utterances and 81.27 h from 283 speakers is used as training
set. Since previous studies have shown that training models from
clean data does not provide sufficient robustness for SQ models [17],
we created a multi-condition training set that resembles the Aurora 4
set by adding additive noise at random SNRs in the range of 10 dB
to 20 dB to 75% of the utterance. Finally, all files were filtered
according to the ITU-T recommendation P.341 [18]. We used the
original Aurora 4 maskers as additive noise (airport, car, restaurant,
subway, babble, exhibition, street, train). To ensure that the DNN
does not overfit to the relatively short noise files from the Aurora 4
multi-condition training set, we also added additional noises from
the Bits and Pieces sound effects library [19] that are similar to the
original selection.
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ITU-P.563 ANIQUE+ SRMRnorm MTD MTD-VAD Gini Gini-VAD
clip 0.861 0.857 0.937 0.977 0.979 0.992 0.981
echo 0.524 0.746 0.758 0.867 0.890 0.814 0.902
chop 0.623 0.552 0.670 0.816 0.802 0.696 0.774
noise 0.831 0.837 0.860 0.807 0.956 0.896 0.954

compspkr 0.632 0.597 -0.189 -0.245 0.620 0.636 0.393
average 0.710 0.748 0.806 0.867 0.906 0.849 0.903

Table 1. Pearson correlation coefficients between MOS values from the TCD-VoIP speech quality corpus and the DNN-based model (right
half of the table), and the baseline measures (columns 2-4). Averages are calculated without the competing speaker (compspkr) condition,
since almost all correlation values in that condition had p values above 0.05. Only ITU-P.563 and the Gini measure without VAD showed
significant correlations for compspkr with p = 0.0498 and p = 0.0480, respectively.
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Fig. 2. Phoneme posteriorgram for a clean speech segment.
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Fig. 3. Waveform and corresponding phoneme posteriorgrams for
the five conditions of the TCD-VoIP database. The signal with the
lowest MOS is selected in each condition. Highlighted areas denote
frames with the highest posterior probability for the silence class
(SIL), which are discarded for VAD-based processing. The phoneme
order and the color mapping are identical to Figure 2 and omitted
here for better readability.

2.3. Subjective listening data

The model was evaluated using the TCD-VoIP corpus [14]. This
database contains subjective quality ratings in the presence of dif-
ferent degradations that can occur in VoIP applications. While the
clean speech is also available from the database, only the corrupted
signals were used in our experiments. In the following all conditions
are briefly described:

Clipping effects: The time signal is multiplied with a factor be-
tween 1 and 55, causing some portion of the samples to be clipped
(i.e. set to 1 or -1). Echo effects: One ore more copies of the signal
are added to the original signal with a delay between 0 and 220 ms
and a relative amplitude of the first delayed version related to the
original between 0 and 0.5. Chopped speech: Samples with a length
between 20 and 40 ms are either replaced with zeros, deleted entirely
or overwritten with the previous portion of samples at a rate of 0 to
6 chops/s. Background noise: Car, street, office and babble noise
are added to the signal at SNRs between 5 and 55 dB. The noise
files are taken from [20]. Competing speakers: Two speakers (fe-
male/male, female/female, or male/male) talking in the background
at SNRs between 10 and 50 dB. The target speech starts 500 ms be-
fore the competing speakers.

For each condition 20 parameter combinations are tested (except
for clip and compspkr with ten parameter combinations). All subjec-
tive data is recorded accordingly ITU-T Rec. P.800 [1] with 13 male
and 11 female normal-hearing subjects (except for the echo condi-
tion with 17 males and 7 females). Before the actual measurement
was performed, subjects listened to speech files that represented the
best and the worst speech quality contained in the test material.

3. RESULTS

Figure 2 shows the posteriorgram for a clean speech segment from
the TCD-VoIP corpus with clear, distinct phoneme activations. Fig-
ure 3 shows posteriorgrams of distorted speech segments with the
lowest perceived SQ per condition. In this figure, multiple phonemes
are often activated in parallel as a result of the distortion. For in-
stance, the posteriorgram for the noise condition (additive road noise
at +5dB SNR corresponding to a MOS of 1.4) shows long activations
for the silence state (SIL) and in parallel often at the HH phoneme
(/h/ as in high). Ideally, the additive background noise should have
activated the NSN (non-spoken-noise) model. However, the DNN
is trained using the original labels for read speech recorded with a
close-talk microphone in a quiet environment, i.e., the NSN labels
are rarely used in the training data. Instead, for the database with
added noise, the SIL class also covers noise-only segments, i.e., the
result is a more general class that also covers noisy speech pauses
due to the multi-condition training. To exclude these segments from
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further processing, the frames in which the SIL class assumes the
highest value are discarded from further analysis for the two models
MTD-VAD and Gini-VAD.

Table 1 shows the correlation values between the baseline mea-
sures and the MOS together with the correlations with the DNN-
based MTD and with the Gini measure.

Among eight conditions (four degradations omitting competing
speaker× two measures), the use of DNN-based VAD improves pre-
dictions in six conditions, which is also reflected in the improved
average values by comparing the measures with and without VAD.
In the competing speakers condition, it seems that the VAD does not
distinguish between the target and the background speakers. Natu-
rally, a lot of phonemes get activated from the compspkr noise so
that frames only get discarded when both speakers remain silent.

The different DNN-based model implementations result in con-
sistently high correlation values that are higher than the baseline
scores in each single condition. In the presence of a competing
speaker, both the baselines and the proposed DNN-based models fail
to accurately predict the perceived SQ. Only ITU-P.563 and the Gini
measure without VAD reach a significant correlation. This condi-
tion is per se problematic for models that are speech-specific but at
the same time speaker-independent (as the DESQ model), since it
requires the model to distinguish between target and the background
speech while it was trained to ignore speaker-specific differences.

4. DISCUSSION

In the following, we discuss the effects of the VAD, differences be-
tween the two analyzed performance measures, as well as future
work and application scenarios.

Effect of speech pauses on listeners’ ratings: The MOS ratings
from the subjects are based on the full audio files including seg-
ments without speech. These regions might also have influence the
subjective ratings, since listeners are able to get a clear glimpse of
noise-only segments and therefore could extrapolate their effect on
speech quality. Hence, a removal of these segments with a VAD
might remove information that played a role in the subjects rating.
Nevertheless, the subjects are asked to rate the speech quality and
not the general audio quality, i.e., there should be a bias towards a
higher importance of active speech regions, and segments without
speech should only play a minor role. This is consistent with the
result that the highest improvements by using the VAD are observed
in the noise condition, in which many noise-dominated segments are
removed and therefore not accessible to the model.

Differences between the performance measures: Overall, the
Gini measure produces results that are very similar to the previously
used MTD. The Gini measure works on each frame separately and
is therefore computationally less expensive than the MTD that re-
quires multiple comparisons over a time span of 800 ms. On a typ-
ical workstation, the computational time with the Gini measure is
approximately 70 times lower than with MTD. One conceptual flaw
of the Gini measure is that it does not take the temporal context into
account that we know to be relevant due to coarticulation effects
[11] and the limited duration of phonemes. While the MTD penal-
izes implausible long phonemes (such as the HH activations in the
noise condition in Figure 3), this is not the case for the Gini mea-
sure. These implausible long phonemes often occur in the presence
of stationary background noise. Since the SIL model reflects these
noises (as discussed in the results section) the posteriorgram-based
VAD resolves this issue for the most part. This explains why MTD-
VAD is the best system for this condition (cf. Table1). Although the
temporal smearing of phoneme activations that motivated the MTD

seems to be an important factor, the good performance with the Gini
measure (especially in the echo condition) show that the sparseness
of the different phonemes in each time frame might also be relevant.
In future research, both measures should be combined to investigate
if they carry complementary information for measuring the degrada-
tion of posteriorgrams.

Potential application scenario: The reason why we are inter-
ested in a small computational footprint of the model is a potential
application in the context of hearing aids: Reference-free perception
models could be used for online-monitoring of the speech quality
in the acoustic scene and for selecting a speech enhancement algo-
rithm (among several algorithms implemented on a hearing aid) that
is optimal for this specific scene. In this context, the required time
window for obtaining reliable estimates of speech quality needs to
be explored. Even if this time window has a duration of several sec-
onds (which is in the range of the duration of utterances used in this
study), the approach could still be applicable for parameters that only
change on longer time scales, e.g., for choosing the speech derever-
beration algorithm that maximizes the perceived quality in a specific
room.

Future work: In this study we used the Pearson correlation be-
tween the MOS and the MTD to evaluate the models. Future re-
search should also consider the uncertainty of the subject ratings
rsig as well as the ε-RMSE to determine the differences between
subjective ratings and models in terms in terms of MOS differences
as proposed in [21], and these evaluation measures should be ob-
tained for a wider range of test corpora. To obtain a mapping from
model output values to the MOS, the training — material that was
used for the subjective listening tests for adapting the listeners to the
range of quality degradations (cf. end of Section 2.3) — could be
used to adapt our model to the expected range as well. However, for
application scenarios as outlined above, an absolute prediction of
the MOS is not required: When the aim is to select the best speech
enhancement algorithm for an acoustic scene, a monotonic relation
between the model and the perceived speech quality is sufficient for
selecting the best algorithm.

5. SUMMARY

The DESQ model based on deep machine learning for the prediction
of speech quality was analyzed in this paper, which is a single-ended
approach that uses degraded acoustic signals as input. As an exten-
sion to previous work, we investigated the effects of a DNN-based
VAD on the predictive power of the model, used an alternative to
quantify the degradation of phoneme posteriorgrams that was sug-
gested as a measure of sparseness (the Gini measure), and compared
the results with state-of-the-art baselines. Overall performance was
found to be very similar on average for the Gini measure and the
previously used MTD, with the MTD resulting in a slightly higher
correlation while the Gini-based DESQ model requires less compu-
tational resources. The use of the VAD increased average scores and
should be used in future models. Independently of the specific per-
formance measure used, the DESQ models outperformed (in term
of correlation) three baseline models (ITU-P.563, ANIQUE+ and
SRMRnorm) in four of the five conditions of this particular test
database. Since our approach is based on a speaker-independent
acoustic model, it is not suited for predicting the speech quality in
the presence of a competing speaker, but produces good results for
clipped, reverberant, noisy, and chopped speech.
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