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ABSTRACT
In this work, the generalization of speech enhancement algorithms based
ondeepneural networks (DNNs) for trainingdatasets that differ in sizeand
diversity is analyzed. For this, we compare noise aware training (NAT)
features and signal-to-noise ratio (SNR) based noise aware training (SNR-
NAT) features. NAT appends an estimate of the noise power spectral den-
sity (PSD) to a noisy periodogram input feature, whereas SNR-NAT uses
the noise PSD for normalization. We show that the Hu noise corpus (lim-
ited size) and the CHiME 3 noise corpus (limited diversity) may result in
DNNswhich donot generalizewell to unseen noises. Weconstruct a large
and diverse dataset from freely available data and show that it helpsDNNs
to generalize. However, we also show that with SNR-NAT features, the
trained models are more robust even if a small or less diverse training set
is employed. Using t-distributed stochastic neighbor embedding (t-SNE),
we demonstrate that using SNR-NAT both the features and the resulting
internal representation of the DNN are less dependent on the background
noise which facilitates the generalization to unseen noise types.

Index Terms— Deep neural networks, generalization, speech en-
hancement, noise reduction, input features

1. INTRODUCTION

Speech is commonly used for communication, e.g., to share ideas and
emotions with others. With the increase of powerful mobile personal
devices, speech plays a central role in many applications, e.g., in
telecommunications, hearing aids and personal home assistants. As
many devices are used in adverse acoustic situations, e.g., on a noisy
street or a noisy household, the microphones do not only capture the
desired speech signal, but also noise. To counteract detrimental effects
of the noise, speech enhancement algorithms are employed. In this paper,
single-channel speech enhancement algorithms are considered. Such
methods can be used to enhance a noisy signal captured by a single
microphone or to improve the output of a spatial filter.

Single-channel speech enhancement is an active research field since
many decades [1–5]. As a consequence, many different approaches have
been presented to solve the problem. Often, the noisy input signal is
represented in a time-frequency domain using the short-time Fourier
transform (STFT). In this domain, a real-valued mask is applied which
suppresses the coefficients which mainly contain noise and preserves
the coefficients dominated by speech. This effectively results in a time-
varying filtering where the frequency bands that mainly contain noise
are attenuated. Many conventional approaches [1, 3, 6] are embedded in
a statistical framework which is used to derive optimal noise suppression
filters that minimize a given error criterion. For the derivations, it is
often assumed that the speech and noise coefficients follow a known
probability density distribution parameterized by the speech power
spectral density (PSD) and noise PSD, respectively. The PSDs are
estimated blindly from the noisy observation using algorithms derived

based on statistical models and signal processing models [1, 7, 8]. Noise
PSD estimators are typically based on the assumption that background
noise varies slower than speech. While this makes these approaches
applicable for a wide range of acoustic conditions, highly non-stationary
noises, e.g., the cutlery in a restaurant, are not suppressed.

The shortcomings of conventional speech enhancement algorithms
motivated the application of machine-learning (ML) for speech enhance-
ment. In contrast to the conventional methods, ML-based methods
learn the statistics of the two components prior to the enhancement
process. In recent years, many approaches leverage the learning capacity
of deep neural networks (DNNs) for speech enhancement, e.g., [5, 9, 10].
Even though learning based approaches show the potential to suppress
highly non-stationary noise types, their generalization to unseen con-
ditions is not guaranteed [11–16]. Thus in [11, 14, 16], noise aware
training (NAT) [17] has been proposed for improving the robustness of
DNN-based speech enhancement methods in unseen acoustic conditions.
This approach appends an estimated noise PSD spectrum to noisy pe-
riodogram input features. In contrast, we proposed signal-to-noise ratio
(SNR) based noise aware training (SNR-NAT) in [18] where the noise
PSD is used for normalization instead of appending it. The SNR-NAT
features are related to the a priori SNR and the a posteriori SNR and
result in DNNs that are more robust in unseen acoustic conditions [18].

In this paper, we continue this work and conduct experiments on
various training sets, which differ in the amount and diversity of the
background noise data. Our contributions are as follows: (1) We show
that the enhancement performance of a feed-forward DNN strongly
depends on the type of training data if the NAT features are employed.
(2) We show that, in this case, datasets like the Hu noise corpus [19]
or the CHiME 3 noise corpus [20] do not allow the resulting DNN to
generalize well to unseen acoustic conditions. (3) We further show that
the generalization can be improved using a large and diverse training
set which we propose to construct using sounds from the freesound.org
website. Even though the Hu noise corpus [19] and the CHiME 3 noise
corpus [20] do not lead to a general DNN if the NAT features are used,
the limited datasets are sufficient to learn a general DNN if the SNR-NAT
features are employed. (4) For better understanding, we analyze the
input features, as well as, the internal representation of the trained DNNs
using t-distributed stochastic neighbor embedding (t-SNE) [21] for
visualization. The graphical analysis gives a simple intuition of the
features’ behavior and shows that the NAT features and the resulting
internal representation are less dependent on the background noise as
compared to theNAT features. This property appears to play an important
role in increasing the robustness for DNN-based speech enhancement.

The paper is structured as follows: Section 2 describes the employed
DNN-based enhancement scheme and its input features. Section 3
describes the employed training data and explains the training procedure.
In Section 4, the considered enhancement schemes are evaluated using
wideband Perceptual Evaluation of Speech Quality (WB-PESQ) [22]
and the feature analysis is conducted in Section 5.
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2. DNN-BASED SPEECH ENHANCEMENT ALGORITHM

In this paper, we analyze the behavior of a DNN-based enhancement
algorithm for five different input features. In this work, the time-domain
signal is sampled using a rate of 16 kHz. The considered speech enhance-
ment algorithm leverages the STFT. Correspondingly, the time-domain
signal is split into overlapping segments which are transformed using
discrete Fourier transform after a square-root Hann window has been
applied. This procedure yields the time-frequency representation of
the clean speech signal Sk,`, the noise signalNk,` and the noisy input
signal Yk,`. The symbols k and ` represent the frequency index and the
time index, respectively. In our experiments, the segment length is set
to 32 ms, i.e., 512 samples, and the segments overlap by 50 %.

The signal is enhanced in the spectral domain. For this, we employ
a feed-forward neural network which comprises three hidden layers
with 1024 rectifying linear units (ReLUs) and an output layer with
257 sigmoid units. The network is used to map features, which are
extracted from the noisy observation Yk,`, to a masking functionGk,`.
In our study, we employ an ideal ratio mask (IRM) which has been
proposed for speech enhancement in [23]

GIRM
k,` =

|Sk,`|2

|Sk,`|2+|Nk,`|2
. (1)

The masking function is used to estimate the clean speech spectrum as

Ŝk,`=max(ĜIRM
k,` ,Gmin)Yk,`. (2)

In (2), ĜIRM
k,` denotes an estimate of the IRMwhich is obtained from a

trained DNN. The quantityGmin introduces a lower limit on the IRM
which has been proposed in [24] to reduce speech distortions and artifacts.
In this work,Gmin is set to−20 dB. The estimated clean speech signal is
obtained using an overlap-add procedure after the enhanced spectra have
been transformed to the time-domain and a square-root Hann window
has been applied for synthesis.

In the remainder of this section, the input features of the DNN are
considered. First, we describe the logarithmized noisy periodogram
which is the basis of the NAT features. The feature vector of a single
frame ` of the logarithmized periodogram is given by

v(Y )
` =

[
log(|Y0,`|2),...,log(|YK,`|2)

]T
. (3)

Here, ·T is the vector transpose and K corresponds to the number
sampling points of the discrete Fourier transform, where the mirror
spectrum is omitted. As consequence, the feature contains only the first
K sampling points, i.e., 257 points for the employed sampling rate and
STFT parameters.

NAThas been considered in [5,11,14,16,17] to improve the robustness
of DNN-based speech enhancement approaches in acoustic conditions
not seen during training. These features are constructed by appending
an estimate of the noise PSD Λn

k,` to the logarithmized noisy input
periodogram. The noise PSD is also logarithmized and the coefficients
of a frame are stacked in a vector as

v(Λn)
` =

[
log(Λn

0,`),...,log(Λn
K,`)

]T
. (4)

The NAT features are then given by the concatenation of v(Y )
` and v(Λn)

`

as
v(NAT)
` =[(v(Y )

` )T ,(v(Λn)
` )T ]T . (5)

Due to the concatenation of two input feature vectors, the dimensionality
of the input features doubles to 514. For estimating Λn

k,`, we use the
conventional noise PSD estimator described in [8]. The noise estimator
leverages a conventionally estimated speech presence probability [8] and

username list of ids

Robinhood76 3238, 3246, 3667, 3668, 3729, 3830, 3870, 3873,
3971, 3979, 3980, 4024, 4025, 4026, 4036, 4058,
4065, 4149, 4364, 5589

rutgermuller 20158

Table 1. Sound packs that form the large and diverse freesound.org noise
dataset. The packs can be downloaded by replacing <username> and
<id> in freesound.org/people/<username>/packs/<id> by the data above.

allows to track moderately changing background noises, e.g., passing
cars on a busy street.

Additionally, we also consider the SNR-NAT features, i.e., the
logarithmized a priori SNR and the logarithmized a posteriori SNR.
These features have been used, e.g., in [25, 26] for data-driven speech en-
hancement approaches which, however, did not consider DNNs. In [18],
it has been shown that the features result in more robust DNN-based
enhancement algorithms if the employed training dataset is limited in
size and diversity. The a priori SNR is given by ξk,`=Λs

k,`/Λ
n
k,` while

the a posteriori SNR is given by γk,`= |Yk,`|2/Λn
k,`. The feature vector

of the SNR-NAT features is correspondingly given by

v(SNR)
` =[log(ξ0,`),...,log(ξK,`),log(γ0,`),...,log(γK,`)]

T . (6)

The speechPSDΛs
k,` is alsoestimatedusingaconventional approach. For

this, we use the cepstral smoothing techniques which has been described
in [7]. In contrast to the well known decision-directed approach [1], this
approach causes less artifacts in the estimate of the speech PSD.

For all features, a context over three previous segments is included. For
this, the vectors for the respective feature are stacked into a super-vector
ṽ` as

ṽ`=[vT
` ,...,vT

`−3]
T . (7)

By using the context, the dimensionality is raised by factor 4, i.e., from
257 to 1028 or from 514 to 2056, respectively.

3. EXPERIMENTAL SETUP

For the training of the DNN-based enhancement scheme above, we
use background noises from three different noise sets: the Hu noise
corpus [19] with the extension presented in [27], the CHiME 3 noise
corpus [20] and a handcrafted noise set created from sound packs
available from freesound.org. For simplicity, we refer to the Hu noise
corpus and its extension just as Hu noise corpus. The noise sets vary in
the amount and diversity of the data as we illustrate in more detail below.

The Hu noise corpus [19] contains 100 non-speech sounds and the
extension1 presented in [27] adds another 15 sounds. Even though many
noise types are included, most of the noise recordings are rather short
with a length shorter than ten seconds. The total duration of the noise
content is about 14 minutes.

For the CHiME 3 noise corpus [20], recordings from four acoustic
environments have been obtained using a tablet equipped with six mi-
crophones. As we consider single-channel speech enhancement, we use
only the audio material from the first microphone. The environments
include the ride on a bus, the interior of a cafe, a pedestrian area and a
street junction. As only four different environments are included, the
diversity of the dataset is relatively low, but the total available noise data
is duration quite large and amounts to about 8.5 hours.

The third dataset is constructed fromvarious sound packs published on
https://www.freesound.org. Table 1 gives an overview of the used packs

1http://staff.ustc.edu.cn/~jundu/The%20team/yongxu/demo/115noises.html
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Fig. 1. WB-PESQ improvements averaged over all testing noise types in dependence of the input SNR, the training dataset and the input feature.
Further, the results of a conventional speech enhancement approach have been added.

and provides the links to the respective downloads. From these packs,
we exclude all sound files whose duration is shorter than 30 seconds.
After this, 282 sound files frommany different acoustic environments
remain and the total duration of the audio material is about 13.5 hours.
In contrast to the Hu noise corpus [19, 27] and the CHiME 3 noise
corpus [20], the created dataset has both a large amount of data and also
a large diversity, i.e., recordings frommany different environments.

The noisy training data is generated by artificially corrupting noise
free sentences of the TIMIT training set [28] using the background noise
of one of the noise sets described above. We use 3992 sentenceswherewe
ensure that thenumberof sentences spokenbymale and female speakers is
the same. The total duration of the speech training data is about two hours.
With these sentences, a training dataset of about 100 hours is generated by
allowing each sentence to be reused 49 times. Each sentence, including
the reused ones, is randomly embedded in a background noise of the em-
ployed noise set. For this, a different excerpt is selected for each sentence.
To allow the conventional noise PSD estimator to adapt to the acoustic en-
vironment, it is ensured that the first two seconds contain only background
noise. After the feature extraction, this part is removed from the training
data. For many speech communication applications like hearing aids or
telephony, this two second initialization is not an issue. By not excluding
it, the results would be strongly impacted by initialization artifacts and
thus not be representative for many speech communication applications.
The input SNR is randomly chosen between−10 dB and 15 dB for each
sentence to allow the DNN to learn how to cope with strongly and weakly
corrupted input signals. Additionally, the time-domain peak level of each
sentence is varied between−26 dB and−3 dB before being corrupted
by the background noise. This changes the overall level for each sentence
during training. The variations are included to make the DNN-based en-
hancement independent of the overall level of the input signal. For approx-
imately 10 % of the overall training data, it is ensured that only the back-
ground noise is present to enable the DNN to reject noise only segments.

The generated data is split into a training and a validation set. The vali-
dation set corresponds to 15%of the overall datawhile the remaining data
is used for training. The parameters of the DNNs are initialized using the
method described in [29]. After this, we use stochastic gradient descent to
reduce the squared error between the predicted IRMand the true IRM, i.e.,

J=
∑
k

∑
`

∣∣∣ĜIRM
k,` −GIRM

k,`

∣∣∣2. (8)

The learning rate is reduced from 0.4 to 0.1 over the training epochs
using an exponential decay as LR=max(0.4·0.95E−1,0.1). Here, LR
is the learning rate andE is the current training epoch. All models are
trained for 100 epochs and we select the model with the lowest error on
the validation set for testing.

4. INSTRUMENTAL EVALUATION

For the instrumental evaluation, we use speech and noise material that
has not been used during training. For testing, ten noise types taken from

the NOISEX-92 database [30] and freesound.org are employed. We
use the “babble”, “factory 1”, “f16” and “hfchannel” environment from
the NOISEX-92 database. Additionally, we modulate the amplitude
of the white and the pink noise from the NOISEX-92 database with a
0.5 Hz sinusoid and include the modified signals in the evaluation. The
remaining four noise types are an aircraft interior noise (freesound.org/
s/188810), an overpassing propeller plane (freesound.org/s/115387), traffic
noise (freesound.org/s/252216) and a vacuumcleaner (freesound.org/s/67421).

The noise data are used to artificially corrupt 128 sentences taken
from the TIMIT test set [28]. Again, it is ensured that the number of
sentences spoken by female and male speaker is the same. Each sentence
is corrupted by all background noises at six input SNRs ranging from
−5 dB to 20 dB in 5 dB steps. Similar to the training, the overall level
of the test mixtures is varied by changing the speech peak level in the
time-domain between−26 dB and−3 dB.

The noisy signals are enhanced using the DNN-based speech en-
hancement algorithm which are trained using the different input features
from Section 2 and the three different noise data sets described in
Section 3. Additionally, we include the results of a conventional speech
enhancement approach which estimates the clean speech coefficients
using the Wiener filter. For estimating the noise PSD and the speech
PSD, the same conventional PSD estimators are used which are also
used for extracting the SNR-NAT features, i.e., [7, 8].

The performance of the enhancement algorithms is compared using
WB-PESQ [22], an instrumental measure to predict the perceived quality
of a processed speech signal. Fig. 1 shows the WB-PESQ improvements
averaged over all testing noise types in dependence on the input SNR, the
training data and the used input feature. The results show that the perfor-
mance of the DNN-based enhancement approach depends on the training
data. The performance may considerably deteriorate if the training data
set lacks size (Hu noise corpus [19]) or diversity (CHiME 3 noise cor-
pus [20]) and the NAT or the periodogram features are employed. Only
using the proposed large and diverse freesound.org training dataset, the
DNN-based enhancement algorithm with the periodogram or NAT fea-
tures is able to clearly improve the quality over the conventional approach.
However, using the SNR-NAT features as input makes the training more
robust and less susceptible to insufficient trainingdata. As a result, the per-
formance of the DNN-based enhancement scheme is almost independent
of the training data with the SNR-NAT features. From these observations,
we conclude that (1) a robust model can be trained if appropriate training
data are available and (2) that the normalization considerably improves
the robustness of the DNN-based speech enhancement approach in un-
seen acoustic conditions even if insufficient training data are available. In
the next section, we provide further insights on this behavior by analyzing
the training features and the internal representations of the DNN.

5. ANALYSIS

In this part, we interpret the WB-PESQ results obtained in Section 4 by
analyzing the input features, the internal states and the output of the DNN.
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Fig. 2. t-SNE of the input feature vectors extracted from four sentences
with a peak level of−6 dB and corrupted by seven different noise types
at an SNR of 5 dB. The color of the data points indicates the noise type.

For this, we employ t-SNE [21] which is a method to embed data vectors
from a high dimensional space in a low dimensional space. For this,
we extracted the NAT features v(NAT)

` and the SNR-NAT features v(SNR)
`

fromartificially corrupted sentences of two female and twomale speakers.
For this analysis, the maximum peak level of the speech signal is set to a
fixed level of−6 dB and the input SNR is set to 5 dB. The four sentences
are corrupted by seven different noise types as shown in Fig. 2. Each
point in the plots corresponds to a high-dimensional feature vector and its
color indicates the noise type from which the vector has been extracted.

Fig. 2 depicts the t-SNE of the raw input features. For improving the
clarity of the embeddings, the context of the features is omitted, i.e., we
do not include the three previous frames as in (7). For the NAT features
v(NAT)
` , it can be observed that the feature vectors form clusters based on
the noise type. Further, there is little overlap between the clusters such
that the data points appear to be easily separable by the noise type. From
this, we conclude that the features strongly depend on the background
noise type. In contrast to the NAT features v(NAT)

` , the clustering is
considerably weaker for the embedding of the SNR-NAT features v(SNR)

`

and a straight-forward separation of the noise types feature is not possible.
As a consequence, the SNR-NAT features are less dependent on the
noise type than the NAT features.

For Fig. 3, the same corrupted speech files as in Fig. 2 are used, but
here t-SNE is applied to the output of the DNN’s second last layer, i.e.,
an internal representation, and the estimated clean speech coefficients.
The former is shown in the upper two rows of Fig. 3 while the latter is
depicted in the lower two rows. The figure shows the embeddings for the
three training datasets described in Section 3. The NAT features v(NAT)

`

lead to an internal representation that also depends on the background
noise type, while the internal representation appears to be less dependent
on the noise type if the SNR-NAT features v(SNR)

` are employed. These
observations hold for all training datasets.

In the third row of Fig. 3, the embeddings of the estimated speech
coefficients are depicted that have been obtained using the NAT features.
The structure of these embeddings clearly depends on the training dataset.
Considering the Hu noise corpus [19] (small size) or the CHiME 3 noise
corpus [20] (low diversity), i.e., the first two columns, the embeddings
form clusters based on the noise type. Note that this is typically an
undesired effect as the estimated speech coefficients should ideally be
independent of the underlying background noise. The clustering is
weaker for the speech estimates that are obtained from amodel trained on
the freesound.org data and correspondingly this model yields higherWB-
PESQ scores as shown in Fig. 1. In the last row of Fig. 3, the embeddings
of the estimated speech coefficients that are obtained using SNR-NAT
features are shown. Here, the structure of the embeddings is similar for
all training datasets and resembles the structure that is obtained from
the best performing model which is trained on the freesound.org dataset.

Fig. 3. Embedding of the internal representation (row 1 and 2) and the
enhanced speech signal (row 3 and 4). The same four sentences and the
same color code as in Fig 2 are used. The columns show the results for
the training sets described in Section 3. Row 1 and 3 are based on the
NAT features and the row 2 and 4 on the SNR-NAT features.

From these observations, we follow that using noise dependent input
features such as the NAT features, leads to a noise dependent internal
representation. But only a large and diverse training dataset allows
the mapping from the noise dependent representation to the IRM to
be learned appropriately. Using, however, the SNR-NAT features, this
mapping is established more easily. As a consequence, the SNR-NAT
feature are more robust to issues in the design of the training dataset or
applications where only limited training data is available.

6. CONCLUSIONS

In this paper, we compared SNR-NAT and NAT features on various
training datasets that differ in size and diversity. We show that a large and
diverse training dataset is required to make the considered DNN-based
enhancement scheme generalize to unseen noise types if theNAT features
are employed. On the one hand, we found that the background noises
included in the Hu noise corpus [19] or the CHiME 3 noise corpus [20]
may not be sufficient to obtain a model that generalizes to unseen noise
types. Only using a large and diverse dataset, which we construct from
sounds of the freesound.org website, a model that generalizes well to
unseen conditions is obtained. On the other hand, we found that using the
SNR-NAT features more robust models are obtained even if the training
data is limited in size or diversity. We analyzed embeddings of the feature
data and the internal representations and showed that the feature data
as well as the internal representation depend less on the noise type. This
property appears to be the key for simplifying the mapping from the
feature space to themasking functionwhichhas tobe learnedby theDNN.
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