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ABSTRACT
We propose a data-driven design method of perfect-reconstruction
filterbank (PRFB) for sound-source enhancement (SSE) based on
deep neural network (DNN). DNNs have been used to estimate
a time-frequency (T-F) mask in the short-time Fourier transform
(STFT) domain. Their training is more stable when a simple cost
function as mean-squared error (MSE) is utilized comparing to some
advanced cost such as objective sound quality assessments. How-
ever, such a simple cost function inherits strong assumptions on the
statistics of the target and/or noise which is often not satisfied, and
the mismatch of assumption results in degraded performance. In this
paper, we propose to design the frequency scale of PRFB from train-
ing data so that the assumption on MSE is satisfied. For designing
the frequency scale, the warped filterbank frame (WFBF) is consid-
ered as PRFB. The frequency characteristic of learned WFBF was in
between STFT and the wavelet transform, and its effectiveness was
confirmed by comparison with a standard STFT-based DNN whose
input feature is compressed into the mel scale.

Index Terms— Learned time-frequency transform, frequency-
warped filterbank, sound source enhancement, deep learning

1. INTRODUCTION

Sound-source enhancement (SSE) is used to recover the target sound
from a noisy observed signal. A recent advancement of SSE is the
use of a deep neural network (DNN) to estimate a time-frequency (T-
F) mask in the short-time Fourier transform (STFT) domain [1–7].
In early studies, the mean-squared error (MSE) is used as the cost
function to train the parameters of DNN [1, 8, 9] because a gradient
of MSE with respect to the parameters can be calculated analytically.
Among MSE-based costs, MSE between the target and masked sig-
nals on the complex plane, which is a cost function recently proposed
for estimating a phase-sensitive mask (PSM) [1], is used as the com-
parison baseline system in many studies [4, 10, 11].

While simple cost functions such as MSE enables us to stably
train DNN, they often inherit strong assumptions on the statistics of
the target and/or noise. For example, MSE assumes that the error
of all frequency bins has zero means and uniform variance, which
cannot be met in usual situations, unfortunately. To overcome this
problem, advanced cost functions, which directly increases perfor-
mance measure of SSE, have been investigated such as the use of
signal-to-distortion ratio (SDR) [12] , Itakura-Saito divergence [13],
and objective sound quality assessments [14–16]. These cost func-
tions enable to increase the target performance directly; meanwhile,
the complexity of gradient calculation is also increased and can re-
sult in unstable training.

At the same time, use of trainable T-F transforms has also been
investigated [12,17–19]. These approaches utilized DNNs for trans-
forming a signal into some domain similar to the T-F domain. Their
parameters were trained together with those of DNN for T-F mask
estimation to improve the performance of SSE. By simultaneously
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Fig. 1. Illustration of the conventional and proposed method.

training the transformation, it can be possible to alleviate the as-
sumption mismatch mentioned in the previous paragraph. However,
the trained transformation may not have the perfect reconstruction
property, and increasing the number of DNN parameters increases
the potential risk of over-fitting. In addition, the transformed signals
are less understandable, which might restrict the application.

An essence revealed by these studies on trainable T-F transfor-
mation is that the performance of SSE can be improved by training
the T-F transform from a dataset. That is, there is a room for im-
proving SSE by designing a better T-F transform. The standard
T-F transforms, including STFT and the wavelet transform, are
well-understood as filterbank, and its design strategy has been stud-
ied widely [20–25]. In particular, perfect-reconstruction filterbank
(PRFB) is the important ingredient of SSE because the enhanced re-
sult must be converted back into the time domain1. By utilizing one
of those PRFBs, it should be possible to learn a T-F transformation
which is understandable from both practical and theoretical point of
views and performs better in terms of SSE.

In this paper, we propose a method of designing PRFB for im-
proving DNN-based SSE. Our strategy is to design a filterbank from
a dataset before training the DNN for T-F-mask estimation so that
the training becomes easier. The key idea is to compensate the mis-
match of the assumption made by the cost function through the de-
signed PRFB. To do so, the warped filterbank frame (WFBF) [22,23]
is utilized as PRFB, and its frequency-warping function is adapted
to the database by calculating the amount of the error between clean
and masked signals at each frequency. As in Fig. 1, the designed
WFBF (at the bottom) distributes the energy of a noisy signal more
uniformly along the frequency than STFT (at the top), which should
be an easier representation for MSE to be minimized.

1Perfect reconstruction means that a signal which is not processed in the
transformed domain can be perfectly reconstructed to the same signal in the
original domain, i.e., no information loss happens by the transformation.
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2. TIME-FREQUENCY MASK ESTIMATION

The problem of SSE is to recover a target signal s[t] degraded by
noise n[t]. An observed monaural signal x[t] is modeled as

x[t] = s[t] + n[t], (1)

where t is the time index. STFT of a signal x = [x[1], . . . , x[T ]]T

with a window function g ∈ RL is defined as

X[ω, k] =

L−1∑
l=0

x[l − ak] g[l] e2πjωbl, (2)

where z is complex conjugate of z, j =
√
−1, a and b are time

and frequency shifting steps, and ω = 1, . . . ,Ω and k = 1, . . . ,K
denote the frequency and time-frame indices, respectively. From the
linearity, Eq. (1) also becomes the summation in STFT domain

X[ω, k] = S[ω, k] +N [ω, k]. (3)

T-F masking is a standard method for SSE, where the estimated tar-
get signal Ŝ[ω, k] is acquired by the element-wise multiplication of
a T-F mask G[ω, k] to the observation X[ω, k] in the STFT domain:

Ŝ[ω, k] = G[ω, k]X[ω, k]. (4)

Then, the output signal is transformed back to the time domain by
the inverse STFT. The T-F mask G[ω, k] must be estimated solely
from X[ω, k], which is the difficult part of T-F masking.

2.1. Deep learning for estimating phase sensitive mask (PSM)

Many methods have applied deep learning for estimating the T-F
mask. In deep learning approach, a T-F mask G[ω, k] is estimated as

Ĝ[ω, k] = Mθ(Ψ)[ω, k] (5)

where Mθ is a regression function implemented by DNN, θ is a set
of its parameters, and Ψ is the input acoustic feature.

Typically, a T-F mask G is chosen to be real-valued. The trun-
cated PSM GPSM is one of the real-valued T-F masks which mini-
mizes MSE between Ŝ[ω, k] and S[ω, k] on the complex plane [1]:

GPSM[ω, k] = T[0,1]

[
|S[ω, k]|
|X[ω, k]| cos(ϕS[ω,k] − ϕX[ω,k])

]
, (6)

where T[a,b][z] = min(max(z, a), b) is the truncation operator, and
ϕS[ω,k] and ϕX[ω,k] are phase angles of S[ω, k] and X[ω, k], respec-
tively. For approximating this mask by DNN Mθ , its parameters θ
are trained to minimize the following MSE for all data in a dataset:

JPSM(θ) =

Ω∑
ω=1

K∑
k=1

|Mθ(Ψ)[ω, k]X[ω, k]− S[ω, k]|2 . (7)

The sigmoid function is often chosen as the activation function of
the output layer of Mθ in order to limit its value within 0 to 1.

2.2. Weighted MSE for reducing assumption mismatch of MSE

The above cost function, MSE, assumes that the error between the
clean and masked T-F bin has the uniform variance for all bins. How-
ever, this assumption cannot be met in reality because both target
source and noise have non-uniform spectral distribution in practical
situations. Such assumption mismatch is problematic since it under-
estimates the error in the frequency range having small power. That
is, higher frequency range, which contains less power for practical
sounds (see Fig. 4), is difficult to train than the lower range.

To normalize the error to make it uniform variance as the as-
sumption of MSE, the cost function should be modified by weight-
ing. Since normalizing the time fluctuation is difficult as it is highly
dependent on each signal, we consider a frequency-wise weighting,

JWPSM(θ) =

Ω∑
ω=1

K∑
k=1

|W [ω](Mθ(Ψ)[ω, k]X[ω, k]− S[ω, k])|2 ,

(8)
which results in the weighted MSE, where the weight is defined as
the reciprocal of the frequency-wise standard deviation of the error,

W [ω] =

{
1

K

K∑
k=1

(
ε[ω, k]

)2 −( 1

K

K∑
k=1

ε[ω, k]

)2}− 1
2

, (9)

and the error is defined through the oracle PSM as

ε[ω, k] = GPSM[ω, k]X[ω, k]− S[ω, k]. (10)

This weighted MSE equally treats the error for each frequency,
which relieves the problem of the assumption mismatch of MSE
because the weighted error has uniform variance for all frequencies.

However, the difficulty of training Mθ cannot be completely
removed by this weighting. Although the cost function becomes
more reasonable by the weighting, the optimization algorithm may
not work appropriately for this function. Since the difference be-
tween the maximum and minimum value of the weight W [ω] is typi-
cally large as the power for each frequency is highly unbalanced (see
Fig. 4), the gradient becomes large for the frequency range having
small power (since W is reciprocal of power). Then, the direction of
the gradient becomes more sensitive to noise in the higher frequency
range, and the effectiveness of a learning algorithm is reduced. That
is, the weighted MSE has a trade-off between the degree of assump-
tion mismatch and difficulty of optimization. From the optimization
point of view, the weight W [ω] should be 1 for all frequencies.

3. PROPOSED METHOD

As discussed in the previous section, weighting is necessary for re-
ducing the assumption mismatch, while the weight should not be uti-
lized for stable optimization. To resolve this dilemma, we propose
to modify the T-F transform instead of modifying the cost function.

3.1. Warped filterbank frame (WFBF) as PRFB

To normalize frequency-wise error in MSE, we propose to use a
frequency-warped PRFB so that the error for each frequency band
has the same power. For warping the frequency axis as desired, the
WFBF [22, 23] is considered in this paper.

The WFBF is a PRFB whose frequency scale can be defined by
a user. The WFBF can be written as the following form:

F (x)[ω, k] =

L−1∑
l=0

x[l − aωk] gω[l] e2πjΦ−1(ω)l, (11)

where Φ is a frequency-warping function which is defined so that
the resulting WFBF has the desired frequency scale (see [22, 23] for
the regularity required for Φ such as C1-diffeomorphism and hav-
ing positive derivative), and the parameters with the subscript ω may
be different for each frequency band. Since Eq. (11) is the down-
sampled convolution between the signal and gω[l] e

2πjΦ−1(ω)l (see
Fig. 2) which can be computed efficiently via the fast Fourier trans-
form (FFT), WFBF is a collection of bandpass filters whose center
frequencies are decided by the warping function, and the window

597



Time [s]

Real
Imag

Time [s]

×
Complex sinusoidal wavee2πjΦ−1(ω)l

Real
Imag

Frequency [Hz]
Frequency response of band-pass filter

Fourier transform

Time [s]
Window function gω[l]

Impulse response of band-pass filtergω[l]e2πjΦ
−1(ω)l

Frequency domain

Fig. 2. Illustration of band-pass filter gω[l] e2πjΦ−1(ω)l in Eq. (11).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (normalized)

(c) Learned WFBF (Proposed)

(a) STFT

(b) Wavelet

M
ag

ni
tu

de

Fig. 3. Frequency responses of (a) STFT, (b) wavelet transform, and
(c) the proposed WFBF learned from training dataset (fs=16 kHz).

functions are automatically derived according to the design require-
ment [22, 23]. As some illustrative examples,

ΦSTFT(ω) = ω/b, Φwavelet(ω) = logc(ω), (12)

recover STFT and wavelet transform, respectively. By only defining
the warping function, one can easily realize WFBF with the desired
frequency scale through implementation in the LTFAT toolbox [26].

3.2. Proposed sound source enhancement in WFBF domain

T-F masking is applied in WFBF domain instead of STFT domain as

ˆF (s)[ω, k] = MF
θ (ΨF )[ω, k]F (x)[ω, k], (13)

where ˆF (s)[ω, k] is the estimated target signal, MF
θ is a DNN-

based regression function, and ΨF is the input feature. After mask-
ing, the estimated time-domain signal is recovered from ˆF (s)[ω, k]
thanks to the perfect reconstruction property of WFBF.

In order to design the warping function, we propose to use the
frequency-wise energy of a training dataset. Since MSE assumes
that the error of all frequency has uniform variance, T-F transform
should be designed to fulfill this assumption. To do so, the error
of T-F masking by the oracle PSM in Eq. (10) is collected from the
training dataset of MF

θ because that is what the training tries to min-
imize. Then, its power spectral density (PSD) is estimated from the
corrected error, which should be normalized to met the assumption
of MSE. For the normalization, we propose to obtain the warping
function Φ by

ΦProp = cumsum(σ + λ), (14)
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Fig. 4. The variance of the oracle PSM masking error ε (red) calcu-
lated in the STFT domain and the learned WFBF domains.

Table 1. Network architectures.
Layer num. Type Size (activation)
Input Fully 64/128/257 → 512 (ReLU)
Hidden 1 BLSTM 512 → 512
Hidden 2 BLSTM 512 → 512
Output Fully 512 → 64/128/257 (sigmoid)

where σ is a vector of the error PSD, λ ≥ 0 is a small regularization
parameter, and cumsum is the cumulative sum taken from lower
to higher frequency. The role of λ is to avoid an excessively wide
frequency band, where a larger λ makes WFBF closer to STFT.

Using the proposed PRFB based on WFBF, MSE can be appro-
priately used as the cost function without the normalization weight,

JProp(θ)=

ΩF∑
ω=1

KF∑
k=1

∣∣∣MF
θ (ΨF )[ω, k]F(x)[ω, k]− F(s)[ω, k]

∣∣∣2 .
(15)

The assumption mismatch is removed by training a DNN based on
this cost function because the energy is normalized for each fre-
quency by the filterbank, and its gradient is stably balanced as the
weight is removed. The proposed PRFB can be viewed as the pre-
emphasis which emphasize the important frequency range and de-
emphasize unimportant range that are learned from the training data.

4. EXPERIMENT

In order to confirm the correctness of the proposed method, the per-
formance of SSE is investigated by comparing the STFT-domain
PSM in Eq. (7) [1], that with the weighted MSE in Eq. (8), and the
proposed method in Eq. (15).

Before that, as a preliminary experiment, frequency-wise vari-
ance of the error ε in Eq. (10) was calculated to see how the pro-
posed warping function ΦProp in Eq. (14) works. By using the train-
ing dataset explained below, the error of the oracle PSM in Eq. (10)
was collected, and its PSD was estimated by the Welch estimator.
The frequency response of the filterbank obtained by the proposed
method (λ= 0.1) is shown in Fig. 3, where an example of the ob-
tained WFBF-domain representation can be found at the bottom of
Fig. 1. The learned WFBF has a characteristic in between STFT and
wavelet transform, which analyzes around 100–800 Hz finely and
other bands coarsely. The variances of the error ε for each frequency
are shown in Fig. 4. From the figure, it can be seen that the pro-
posed filterbank obtained more balanced distribution of the masking
error. While smaller λ results in more balanced variance distribu-
tion, wider frequency band appears in high-frequency range which
is not favorable. We chose λ = 0.1 to balance this trade-off. Note
that computation of the proposed design method is quite fast and
scalable because it only requires PSD estimation of masking error
which can be computed by STFT with FFT.
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Table 2. SDR of enhanced speech. The bold fonts indicate the highest score, while asterisks indicate significance.
Input SNR Input dimension T-F transform Cost function factory1 factory2 f16 babble

6 dB

STFT MSE 10.48 12.60 10.50 9.71
64 STFT weighted MSE 9.87 11.86 10.31 8.90

Proposed MSE ∗12.21 ∗14.65 ∗12.58 ∗11.66
STFT MSE 10.67 13.16 10.82 9.92

128 STFT weighted MSE 9.77 11.92 10.46 8.89
Proposed MSE ∗11.82 ∗14.17 ∗12.24 ∗11.13

257 STFT MSE 10.07 12.44 10.33 9.53
STFT weighted MSE 9.50 11.44 10.22 8.81

0 dB

STFT MSE 6.35 8.63 6.39 5.41
64 STFT weighted MSE 5.65 7.51 6.19 4.72

Proposed MSE ∗8.11 ∗10.71 ∗8.62 ∗7.27
STFT MSE 6.31 8.87 6.49 5.45

128 STFT weighted MSE 5.37 7.31 6.27 4.49
Proposed MSE ∗7.85 ∗10.40 ∗8.42 ∗6.92

257 STFT MSE 5.58 8.24 6.02 5.03
STFT weighted MSE 5.04 6.99 5.93 4.43

-6 dB

STFT MSE 3.04 5.03 3.17 1.98
64 STFT weighted MSE 2.66 4.04 3.02 1.75

Proposed MSE ∗4.17 ∗6.74 ∗4.76 ∗2.99
STFT MSE 2.90 5.10 3.20 1.96

128 STFT weighted MSE 2.33 3.78 3.15 1.55
Proposed MSE ∗4.09 ∗6.65 ∗4.78 ∗2.83

257 STFT MSE 2.30 4.64 2.87 1.77
STFT weighted MSE 2.02 3.54 2.80 1.58

4.1. Experimental conditions

4.1.1. Dataset

The Wall Street Journal (WSJ-0) corpus and noise dataset CHiME-3
were used as the training datasets of the target source and noise, re-
spectively. The WSJ-0 dataset consisted of 14 633 utterances. The
utterances were randomly separated into two sets: a training set
consisting of 13 170 speech files and validation set including 1463
speech files. CHiME-3 consisted of four types of background noise:
cafes, street junctions, public transport (buses), and pedestrian ar-
eas [27]. The noisy signals for the training/validation dataset were
formed by mixing clean speech utterances with the noise at signal-
to-noise ratio (SNR) levels of -6 to 12 dB. As the test datasets, 500
utterances randomly selected from the TIMIT corpus were used for
the target-source dataset, and four types of ambient noise factory1,
factory 2, f16, and babble from the NOISEX92 dataset were used as
the noise dataset. All files were recorded at sampling rate of 16 kHz.

4.1.2. DNN architecture and setup

The performances of SSE in the proposed WFBF domain and the
conventional STFT domain were compared on the network with the
two bidirectional long short-term memory (BLSTM) consisting of
512 cells. As the activation function of the input layer, the rectified
linear unit (ReLU) was used. The sigmoid function was used at the
output layer for limiting the values within the range 0 to 1. In the
proposed method, input acoustic feature ΨF was defined as

ΨF [ω, k] = ln(|F (x)[ω, k]|), (16)

where | · | denotes the absolute value. In the proposed method,
the number of frequency bins (and thus input dimension) was set to
64/128. In the conventional STFT, the number of frequency bins was
set to 512 (i.e., input dimension was 257), and the window is shifted
by 256 samples. To match the input dimensions between the conven-
tional and proposed methods, 64/128 dimensional log-mel transform
matrix and its pseudo-inverse were applied to STFT, i.e., input fea-
ture of the conventional STFT Ψ was

Ψ[ω, k] = ln(Mel[|X[ω, k]|]), (17)

where Mel[·] denotes the mel matrix multiplication. The conven-
tional method without log-mel transform is also considered as a
baseline. In summary, the input dimensions of the conventional
method were 64, 128, and 257. These architectures are summarized
in Table 1. They were trained 200 epochs in the same way as [28],
where each epoch contained 1000 utterances, and mini-batch size
was 5. The learning and dropout rates were decreased linearly.

4.2. Experimental result

The performances of SSE were measured by the signal-to-distortion
ratio (SDR). The experimental results are summarized in Table 2.
Bold font indicates the best score within the same condition, and as-
terisks represent that the scores were significantly higher than those
of second-placed methods within the same condition (provided by
the paired one-sided t-test with p < 0.01). For all cases, the pro-
posed WFBF achieved the highest scores. The scores of the con-
ventional STFT tends to decrease as the input dimension decreases,
while those of the proposed WFBF did not. It was also confirmed
that weighted MSE in STFT domain obtained less performances than
the usual MSE, which should be because of the difficulty of the opti-
mization. These results indicate that using the learned T-F transform
instead of the ordinary STFT is more efficient for SSE. Note again
that, after calculating the proposed warping function in Eq. (14), the
WFBF can be easily obtained through warpedfilters function
in the LTFAT toolbox [26] by just substituting it.

5. CONCLUSIONS

In this paper, a data-driven design method of PRFB using WFBF was
proposed for DNN-based SSE. By considering WFBF, the learning
problem of T-F representation was reduced to calculation of the one-
dimensional frequency-warping function, which is obtained through
PSD of oracle masking error. Since the calculation of the proposed
warping is cheap, it can be easily adapted to different dataset in con-
trast to a fully DNN-based learning of T-F-like representation. Fu-
ture works include simultaneous optimization of a T-F mask esti-
mator and the warping function as well as consideration of a better
DNN architecture suitable for processing in the filterbank domain.
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