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ABSTRACT
A sound field reconstruction method for a region including sources
is proposed. Under the assumption of spatial sparsity of the sources,
this reconstruction problem has been solved by using sparse decom-
position algorithms with the discretization of the target region. Since
this discretization leads to the off-grid problem, we previously pro-
posed a gridless sound field decomposition method based on the
reciprocity gap functional in the spherical harmonic domain. Even
though this method allows efficient estimation with a closed-form
solution while avoiding the off-grid problem, the estimation using a
single time-frequency bin can be greatly affected by measurement
errors. We formulate an optimization problem using the identical
structure of source locations in multiple time-frequency bins and de-
rive an algorithm based on an annihilating filter. Numerical simula-
tion results indicated that robustness against noise can be improved
by the proposed method.

Index Terms— reciprocity gap functional, annihilating filter,
sound field decomposition, source identification, spherical harmon-
ics

1. INTRODUCTION

Sound field reconstruction aims to estimate a continuous acoustic
field inside a target region using measurements of multiple micro-
phones. Such a reconstruction enables the realization of high-fidelity
audio systems with arbitrarily selected listening positions by using
multiple loudspeakers or a headphone. An efficient strategy in this
reconstruction is to represent the target sound field as a sum of ele-
ment solutions of the Helmholtz equation, such as plane waves [1–
3], harmonic functions [1, 4–6], Green’s functions [7, 8], and mul-
tipoles [9]. We here call this type of representation sound field de-
composition. A sound field inside a region not including any sources
can be reconstructed by decomposing the measurements into these
element solutions. On the other hand, when the target region in-
cludes sources, this reconstruction problem becomes ill-posed since
the source distribution can be any function.

To estimate a sound field inside a region including sources, it
is necessary to impose some assumptions on the source distribution.
An effective and practical assumption is the spatial sparsity of the
sources, as proposed in [8], which also enables the high-resolution
analysis of the sound field. The target region is discretized into a
set of grid points, and the sound field is decomposed into Green’s
functions on these grids by using sparse-representation techniques
(see Fig. 1(a)). To improve the robustness of the decomposition, the
group-sparse structure in the time-frequency domain, i.e., the simul-
taneous activation of time-frequency bins on the same grids, is also
exploited [9, 10]. However, the discretization of the target region

causes the off-grid problem, i.e., the deterioration of the decomposi-
tion accuracy when the sources are off the grid points.

To overcome the above-mentioned off-grid problem, the authors
previously proposed a gridless approach for decomposing the sound
field based on the reciprocity gap functional (RGF) in the spherical
harmonic domain [11]. The RGF was first proposed in the field of
mathematical inverse problems, and has been applied to source lo-
calization and scattering problems [12–16]. The method based on
the spherical-harmonic-domain RGF (SHD-RGF) enables the sound
field to be decomposed into point sources in a gridless manner us-
ing multiple spherical microphone arrays or acoustic vector sensors
with more flexible geometries (Fig. 1(b)). Even though the estimates
of the locations and amplitudes of point sources inside the target re-
gion are obtained as a closed-form solution, the algorithm proposed
in [11] cannot exploit the identical property of source locations in
the time-frequency bins to improve robustness, as used in the group-
sparse representation. Furthermore, the estimates in the form of a
closed-form solution can be greatly affected by noise because the
problem to be solved does not involve the modeling of measurement
errors.

Here, we propose a gridless sound field decomposition algo-
rithm that exploits the identical property of source locations in mul-
tiple time-frequency bins. The optimization problem based on struc-
tured SHD-RGF involving a noise model is formulated using an an-
nihilating filter (AF) [17], and we derive an algorithm to find its valid
solution. The use of an AF is known as a method for reconstructing
the finite rate of innovation (FRI) signals [18]. Numerical experi-
ments in a three-dimensional (3D) space are conducted to show the
effect of the gridless property and the robustness of the proposed
method against noise by comparing it with the methods using a sin-
gle time-frequency bin [11] and group-sparse decomposition [9].

2. PROBLEM STATEMENT

Consider a spherical target region Ω with its boundary ∂Ω in the
free field. The coordinate origin is set at the center of Ω and the
pressure of the frequency ω at the position r = (r, θ, ϕ) in spherical
coordinates is denoted as u(r, ω). Since Ω is assumed to include
sources, u(r, ω) satisfies the following inhomogeneous Helmholtz
equation:

(∇2 + k2)u(r, ω) = −Q(r, ω), (1)

where k denotes the wave number, which is defined as k = ω/c with
sound speed c, and Q(r, ω) represents the source distribution inside
Ω. Here, u(r, ω) is also assumed to satisfy the Sommerfeld radiation
condition [1]. We hereafter omit ω for notational simplicity. By
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Fig. 1: Sound field models (a) in [9] and (b) in proposed method for
decomposition.

assuming that Ω includes J point sources, Q(r) is represented as a
linear combination of J delta functions as

Q(r) ≈
J∑

j=1

cjδ(r− rj), (2)

where rj and cj represent the jth source location and its amplitude,
respectively. The solution of (1), u(r), can be represented as the
convolution of Q(r) and the free-field Green’s function G(r) [1].
Then, u(r) is approximated by using (2) as

u(r) =

∫
Ω

Q(r′)G(r|r′)dr′ ≈
J∑

j=1

cjG(r|rj), (3)

where G(·) is defined as

G(r|r′) = eik∥r−r′∥2

4π∥r− r′∥2
. (4)

Therefore, the estimation of the source parameters rj and cj makes
it possible to represent the sound field inside Ω by (3), which also
enables the reconstruction of u(r) for continuous r. When the sound
field inside Ω includes reverberation, i.e., homogeneous solutions to
the Helmholtz equation, sound field separation techniques will be
necessary as preprocessing [19].

Our measurement model is as follows. Suppose that Q spherical
microphone arrays or acoustic vector sensors are arranged on ∂Ω
as shown in Fig. 1(b). By using the qth array at rq , the spherical
harmonic expansion coefficients of the sound field up to the Nmth
order with the expansion center rq are obtained, which are denoted
as α(q) := [α

(q)
0,0, . . . , α

(q)
Nm,Nm

]⊤. On the other hand, the pressure
field on ∂Ω can be represented in the spherical harmonic domain
with the expansion center at the (global) origin as

u(r) =
∑
ν,µ

uν,µhν(kr)Yν,µ(θ, ϕ), (5)

where Yν,µ(θ, ϕ) is the spherical harmonic function, hν(·) is the
νth-order spherical Hankel function of the first kind, and

∑
ν,µ is the

abbreviated form of
∑∞

ν=0

∑ν
µ=−ν . By using the truncated global

coefficients u := [u0,0, . . . , uN,N ]⊤ with the truncation order N ,
α(q) is approximately represented as

α(q) = S(rq)u, (6)

where S(rq) ∈ C(Nm+1)2×(N+1)2 is the translation matrix [20]
used to relate expansion coefficients for different expansion cen-
ters [5, 21]. When the vector of the measured harmonic coefficients
is defined as α := [α(1)⊤, . . . ,α(Q)⊤]⊤ ∈ CQ(Nm+1)2 , (6) can be
reformulated as

α = Tu, (7)

where the matrix T ∈ CQ(Nm+1)2×(N+1)2 is defined as T :=
[S(r1)

⊤, . . . ,S(rQ)
⊤]⊤. Our goal is to estimate the source param-

eters rj and cj from the measurements α.

3. RGF IN SPHERICAL HARMONIC DOMAIN

We here overview the gridless sound field decomposition method
based on SHD-RGF [11]. First, we define the test function w(·) that
satisfies the homogeneous Helmholtz equation and the functional
R(·) with respect to w(·) as

R(w) =

∫
∂Ω

(
u(r)

∂w(r)

∂n
− w(r)

∂u(r)

∂n

)
dS. (8)

From (2) and (8), the parameters to be estimated, cj and rj , are
related to the boundary values of the sound field as

J∑
j=1

cjw(rj) =

∫
∂Ω

(
u(r)

∂w(r)

∂n
− w(r)

∂u(r)

∂n

)
dS. (9)

Several test functions w(·) have been proposed for solving (9) [12–
14]. We use the test function wn(·) proposed in [12], which is de-
fined in Cartesian coordinates r = (x, y, z) as

wn(r) = pne−ikz. (10)

Here, n is an arbitrary positive integer and p := x + iy. The test
function wn(r) can be represented in the spherical harmonic domain
as

wn(r) =
∑
ν,µ

w(n)
ν,µjν(kr)Yν,µ(θ, ϕ), (11)

where jν(·) is the νth-order spherical Bessel function and the coef-
ficients w(n)

ν,µ can be analytically obtained as

w(n)
ν,µ =

in−ν

kn

√
4π(2ν + 1)(ν + n)!

(ν − n)!
δµ,n. (12)

By calculating the surface integral on the right side of (9) in the
spherical harmonic domain, sn := R(wn) can be analytically ob-
tained as

sn =
i

kR2

∑
ν,µ

(−1)µ+1w
(n)
ν,−µuν,µ, (13)

where R is the radius of Ω. From (7), the estimate of u, û, can be
obtained as

û = T†α, (14)

where (·)† represents the Moore–Penrose pseudoinverse matrix. The
estimate of sn is obtained by truncating the order ν up to N in (13)
and substituting ûν,µ obtained using (14) and w

(n)
ν,µ given in (12)

into (13). The parameters including the source locations pj can be
estimated by the singular value decomposition of Hankel matrices
composed of sn [11, 12].
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4. STRUCTURED RGF AND ALGORITHM USING
ANNIHILATING FILTER

As discussed in Sect. 3, the method proposed in [11] enables us to
estimate source parameters using the closed-form algorithm. How-
ever, such a solution does not allow accurate estimation in a noisy
situation, where the measurements are modeled with the measure-
ment errors ϵ as

α = Tu+ ϵ. (15)

Moreover, the estimation using α for a single time-frequency bin
will be strongly affected by ϵ. To improve robustness against mea-
surement errors, we formulate an optimization problem for (15) by
using the identical property of source locations for multiple time-
frequency bins. However, it is difficult to solve such a problem by
composing the Hankel matrices as in [11]. Therefore, we consider
the application of an AF, which is a parameter estimation technique
using a filter represented by a polynomial function whose roots cor-
respond to the parameters to be estimated, to the problem formula-
tion and algorithm design. The proposed AF-based decomposition
algorithm enables the robust estimation of pj from sn using multiple
time-frequency bins.

4.1. Construction of AF

First, we construct the AF represented by a polynomial function
whose roots correspond to pj as

H(q) =

J∏
j=0

(1− pjq
−j) =

J∑
j=1

hjq
−j . (16)

The convolution of the coefficient sequence hn and the elements sn
for n ∈ N is represented as

hn+J ∗ sn+J =

J∑
j=0

hjsn+J−j (17)

=

J∑
j′=1

cj′e
−ikzj′ pn+J

j′

J∑
j=0

hjp
−j
j′ . (18)

On the basis of the property of the AF, H(pj) becomes 0 for j =
1, . . . , J . Therefore, the convolution (18) satisfies

hn+J ∗ sn+J = 0 (n = 1, . . . , J). (19)

For simplicity, (19) for n = 1, . . . , J is represented as h ∗ s = 0.
By estimating the filter coefficients (hj)

J
j=0, the estimate pj , which

includes the source parameters, can be obtained. Since the measure-
ments α can be obtained for multiple time-frequency bins by using
a short-time Fourier transform, the common AF can be used for each
time-frequency bin. Here, the indices of the frequency bins and time
frames are denoted as f (∈ {1, . . . , F}) and t (∈ {1, . . . , T}), re-
spectively. When the source locations are assumed to be static for T
time frames, the AF satisfies h ∗ sf,t = 0 for all f and t.

4.2. Algorithm using multiple time-frequency bins

The optimization problem for SHD-RGF using the AF can be for-
mulated as

minimize
uf,t,h

∑
f,t

∥αf,t −Tfuf,t∥22

such that h ∗ sf,t = 0

hHh = 1,

(20)

Algorithm 1 Proposed AF-based algorithm for SHD-RGF

Input: Local spherical harmonic coefficients αf,t, translation ma-
trices Tf , number of sources J , and threshold η.

Output: Global spherical harmonic coefficients uf,t, and AF h.
for i← 1 to I do

Compute Λ(h) with h = h(i−1) and update h(i) by solving
(24)
Update u

(i)
f,t with the updated AF h = h(i) by (23)

if
∑

f,t ∥αf,t −Tfu
(i)
f,t∥

2
2 ≤ η then

Terminate loop
end if

end for
uf,t ← u

(i)
f,t, h← h(i).

where the constraint hHh = 1 is imposed to avoid the trivial solu-
tion h = 0. To represent the convolution h ∗ sf,t as a linear form
with respect to uf,t and h, the matrices Wf (h) ∈ CJ×(N+1)2 and
Vf (uf,t) ∈ CJ×(J+1) are defined so that they satisfy

h ∗ sf,t = Wf (h)uf,t = Vf (uf,t)h. (21)

By using this linear representation, an equivalent optimization prob-
lem to (20) can be formulated by substituting the constraint condition
into the objective function [22, 23]. When h is fixed, the augmented
Lagrangian function L(uf,t,θf,t) is defined as

L(uf,t,θf,t) :=
1

2

∑
f,t

∥αf,t −Tfuf,t∥22

+
∑
f,t

θH
f,tWf (h)uf,t, (22)

where θf,t is the Lagrangian multiplier. From the stationary condi-
tion of (22), the solution uf,t can be obtained as

uf,t(h) = vf,t − (TH
fTf )

−1

·Wf (h)
HΣ(h)−1Wf (h)vf,t, (23)

where vf,t := (TH
fTf )

−1TH
fαf,t. By substituting (23) into the

objective function (20), the following optimization problem, which
is equivalent to (20), can be derived:

minimize
h

hHΛ(h)h

such that hHh = 1,
(24)

where the matrix Λ(h) ∈ C(J+1)×(J+1) is defined as

Λ(h) :=
∑
f,t

Vf (vf,t)
HΣ(h)−1Vf (vf,t) (25)

Σ(h) := Wf (h)(T
H
fTf )

−1Wf (h)
H. (26)

Since it is difficult to solve (24) directly, we apply an iterative algo-
rithm to find a valid solution [22]. Starting with an initial value h(0),
h is updated by solving (24). Then, Λ(h) is computed with the re-
constructed h from the previous iteration. At each iteration, uf,t is
updated by (23), which is used for the stopping rule of the iterations.
The proposed algorithm is summarized in Algorithm 1.
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(a) (b)
Fig. 2: Scatter plots of true and estimated locations. Marks “⊗”
in black, “×” in red, “+” in blue, and “·” in green represent the
true locations and the locations estimated by G-RGF, G-Sparse,
and RGF, respectively. (a) x-y-plane and (b) x-z-plane.

5. EXPERIMENTS

Numerical simulations were conducted to evaluate the proposed
method under the free-field condition in 3D space. We compared
the proposed method using the structured (group) SHD-RGF (G-
RGF) with the method based on SHD-RGF using the Hankel matrix
(RGF) [11] and the method based on group-sparse decomposition
(G-Sparse) [9]. The sound field decomposition performance of each
method was evaluated in terms of the source localization accuracy.

The radius of the spherical target region Ω was 1.0 m. Spher-
ical microphone arrays (or acoustic vector sensors) that can mea-
sure the spherical harmonic coefficients up to the second order were
used. The arrays were uniformly arranged on four horizontal rings
on the surface ∂Ω. Nine arrays were set on each circular ring and the
rings were set at zenith angles of 40◦, 75◦, 105◦, and 140◦. For G-
Sparse, the grid points were set inside Ω. Three different intervals
between the grid points d were investigated, d = 0.10, 0.15, and
0.20 m. Orthogonal matching pursuit (OMP) [24] was applied as
the sparse decomposition algorithm. Two point sources were set at
(0.33,−0.46, 0.13) m and (−0.15, 0.46,−0.14) m. Multiple sine
waves with amplitudes generated by a complex Gaussian distribution
were used as source signals. Three frequency bands (groups) of the
source signals were assumed to be obtained: 200–400 Hz, 400–600
Hz, and 600–800 Hz. The number of time frames, T , was 10. Gaus-
sian noise was also added so that the signal-to-noise ratio (SNR) was
20 dB. In RGF, the signal of the single frequency bin at each time
frame was used for the estimation. Each group of time-frequency
bins was used in G-RGF and G-Sparse.

For evaluation, we define the root-mean-square error (RMSE) of
the estimated source locations as

RMSE =

√√√√ 1

J

J∑
j=1

∥rj,true − r̂j∥22, (27)

where rj,true and r̂j are the true and estimated locations of the jth
source, respectively.

Fig. 2 shows the scatter plot of the estimated locations for each
method, where the results for d = 0.1 m are only plotted for G-
Sparse. For RGF, the estimated locations widely varied owing to
the measurement noise. On the other hand, G-RGF and G-Sparse
achieved relatively accurate localization with small variances owing
to the use of multiple time-frequency bins. Note that the estimated
locations for G-Sparse cannot be closer to the true locations than
the grid points, whereas this off-grid problem was avoided for G-
RGF. The RMSE of each method is also shown in Fig. 3, where

Fig. 3: RMSE for each group of frequency bins.

Fig. 4: Relationship between SNR and average estimation error.

the results for each group of frequency bins are separately plotted.
For RGF, the RMSEs were averaged over the time-frequency bins
of each group. The RMSE of G-RGF was smaller than those of
G-Sparse and RGF in all cases.

Fig. 4 shows the relationship between the SNR and the expected
estimation error, i.e., E[∥r̂ − rtrue∥2], when a single point source
was located at (0.33,−0.46, 0.13) m. The computation of E[∥r̂ −
rtrue∥2] was performed for 200 noise patterns. The group of fre-
quency bins of 400–600 Hz was used for G-RGF and G-Sparse.
The single frequency bin at 400 Hz was used for RGF. The highest
estimation accuracy was achieved by the proposed G-RGF above
6 dB. Although the estimation error of G-Sparse was almost con-
stant owing to the off-grid effect, G-Sparse exhibited better perfor-
mance than G-RGF at low SNRs.

6. CONCLUSION

We proposed a gridless sound field decomposition method based on
the structured RGF in the spherical harmonic domain (SHD-RGF).
Since it is difficult to solve the optimization problem including
a noise model at multiple time-frequency bins with the previous
Hankel-matrix-based schemes, we derived an iterative decomposi-
tion algorithm using an AF. The proposed method makes it possible
to improve robustness against noise. Furthermore, the gridless prop-
erty allows the accurate estimation of source parameters, especially
at high SNRs.
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