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ABSTRACT

The low frequency behaviour of the source strength solution
of the two loudspeaker crosstalk cancellation system is anal-
ysed. Using the rigid sphere head model, an accurate 1st order
approximation of the source strength solution is derived, as-
suming a centred listener position. It is shown that the 1st

order approximation of the source strength solution corre-
sponds to the well-known stereo sine law. The validity of this
approximation for real systems is supported by a compari-
son of simulated low frequency complex source strengths and
the real stereo panning functions. To obtain a realistic analy-
sis, the simulated source strengths are created using KEMAR
head-related transfer functions. It is shown that the simulated
source strengths converge to the stereo sine law in the low
frequency limit under the expected conditions.

Index Terms— crosstalk cancellation, stereo, binaural,
amplitude panning

1. INTRODUCTION

Two loudspeaker crosstalk cancellation (CTC) systems were
proposed nearly sixty years ago as a means to reproduce bin-
aural audio at a listener’s ears without headphones and is still
an active area of research today [1, 2]. The theory under-
pinning the classic CTC system can be described by a linear
inverse problem relating field pressures to individual source
strengths transformed by a radiation matrix [3]. The inver-
sion of acoustic transfer functions between the loudspeakers
and the ears contained in the radiation matrix allows for repro-
duction of a desired binaural audio stream without crosstalk,
in ideal conditions.

As the inverse of the radiation matrix is the key ingredient
to achieve CTC, it has been an object of study in the context of
CTC systems, and more generally sound field control, for sev-
eral decades [4, 5, 6, 7, 8]. It has been shown by some authors
that, depending on the assumed acoustic transfer functions
and problem geometry, the radiation matrix to be inverted will
be ill-conditioned for particular frequencies of reproduction
[9, 10]. Ill-conditioned CTC systems suffer from sensitiv-
ity to small perturbations in the system, e.g., a deviation in
assumed acoustic environment or loudspeaker misalignment
[11]. This ill-conditioning can be paired with a large inverse

norm. Indeed, in the low frequencies the radiation matrix in-
verse norm can be very large in the case of compact CTC
systems [12]. Large norms in general can potentially result in
loss of system dynamic range and audio quality [6].

Regularisation is often used to improve system robustness
to perturbations and reduce the inverse norm so that the fi-
nal loudspeaker signals are tolerable in magnitude [11]. A
prevailing design pattern has been to find a compromise be-
tween the radiation matrix inverse norm and the errors intro-
duced by regularisation [3]. Alternatively, or in combination,
the geometry of the system and specification of the radiation
matrix may be altered. For example, Takeuchi and Nelson
proposed the Optimal Source Distribution (OSD), which sug-
gests a continuum of stereo loudspeaker pairs of increasing
span with decreasing frequency in order to achieve an inverse
filter with a flat magnitude response and a system condition
number of one [6].

Much of the previous research has focused on the radia-
tion matrix inverse norm and system condition as quantities
around which to design a desired CTC system. While these
methods anticipate the inclusion of a desired binaural signal,
they have not explicitly analysed the general source strength
solution to the CTC radiation problem as stated in (5) below.
It was noted briefly by Takeuchi and Nelson that the end re-
production is highly dependent on the desired binaural signal,
however this idea was not explored in detail [6]. Instead, the
focus has been directed towards the behaviour of the radiation
matrix inverse. Therefore, the motivation driving this work is
to shed further light on the source strength solution.

The following study will analyse the 1st order approxima-
tion of the CTC source strength solution, i.e., low frequency
approximation. It will be shown that under a given set of rea-
sonable assumptions the 1st order approximation of the source
strengths amounts to ratios of scaled phase differences. In or-
der to offer an accurate analysis in regards to the presence of a
human head, the rigid sphere head model is introduced. It has
been shown previously that the rigid sphere is a valid model
for the human head at low frequencies in anechoic conditions
[13]. It is shown that in the low frequency limit, the ana-
lytical complex source strengths converge to the real-valued
stereo sine law when the radiation matrix and desired binaural
signal are commonly derived from the rigid sphere HRTF as-
suming plane wave sources. This specific result corresponds
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to the case of in situ measurement and reproduction of a sin-
gle plane wave virtual source at low frequencies. It is then
shown that source strengths numerically calculated from far
field mannequin HRTF data converge to the stereo sine law
in the low frequencies with a decreasing imaginary compo-
nent, confirming that the stereo sine law is a valid 1st order
approximation of the CTC source strengths under the stated
assumptions.

2. LOW FREQUENCY RIGID SPHERE HRTF

It is well known that the 1st order approximation of the rigid
sphere HRTF due to a far field source is [14]

H(k, a,ΘL,R) ≈ 1− j 3

2
ka cos ΘL,R, ka� 1, (1)

where k = 2π
λ is the wavenumber, a is the head radius in

metres and ΘL,R are the angles between the incident plane
wave arrival vector and the left and right ear position vectors.
These vectors are measured from the origin that is placed at
the centre of the listener’s head. From this it can be said
|H(k, a,ΘL,R)| ≈ 1 and ∠H(k, a,ΘL,R) ≈ − 3

2ka cos ΘL,R

for ka� 1, i.e., low frequencies.
Note that ka cos ΘL,R = k‖n̂S‖2‖xL,R‖2 cos ΘL,R =

kn̂S · xL,R = kS · xL,R, where n̂S ,xL,R ∈ R3 are the
plane wave direction of arrival and ear position vectors, re-
spectively. Furthermore, the ears are assumed to be diametri-
cally opposed. Then it can be said xL = −xR. This allows
the left and right HRTFs to be expressed in terms of the left
ear position vector only as

H(k, a,ΘL) ≈ 1− j 3

2
kS · xL, (2)

H(k, a,ΘR) ≈ 1 + j
3

2
kS · xL, (3)

valid for ka� 1.
(2) and (3) provide a simple model for approximating the

human HRTF at low frequencies [14].

3. CROSSTALK CANCELLATION SYSTEM

The design of the two channel CTC system can be expressed
in the frequency domain as a linear system of the form [15]

p = GHd, (4)

where p ∈ C2 is the reproduced binaural signal at the ears
(called control points), d ∈ C2 is the desired binaural signal
input, G ∈ C2×2 is the matrix of acoustic transfer functions
between the plane wave sources and the ears (called the radi-
ation matrix) and H ∈ C2×2 are the CTC inverse filters, such
that GH = I2e

−jω∆t (if no regularisation is applied). If G
is full rank, H = G−1e−jω∆t. Note that the delay e−jω∆t is
necessary for a causal solution but will omitted for brevity in
the following analysis, although its presence is implied.

4. LOW FREQUENCY SOURCE STRENGTHS

The source strength solution will now be defined as

q = Hd. (5)

To obtain a general and accurate low frequency approxima-
tion for q that is valid for the centred listening position and
allows for head rotation, the general form of the radiation ma-
trix and desired binaural signal are defined as

G =

[
G1 G2

G∗1 G∗2

]
, d =

[
d
d∗

]
. (6)

This specification matches the conjugate symmetry of the low
frequency rigid sphere HRTF (Section 2) and is therefore a
reasonable assumption.

The expression for q is readily found as

q =
1

= (G1G∗2)

[
= (G∗2d)
= (G1d

∗)

]
. (7)

While (7) may be valid for plane waves incident on a shad-
owless head, it is not in general for a human head until the
1st order (low frequency) approximation is introduced. Con-
sidering that the arbitrary complex number z ∈ C has the
1st order approximation z ≈ |z| (1 + j∠z) ,∠z � 1, the 1st

order approximation of (7) is readily found as

q ≈ α
[
|G2| (∠d− ∠G2)
|G1| (∠G1 − ∠d)

]
, ∠G1,∠G2,∠d� 1, (8)

where α ≡ |d|
|G1||G2|(∠G1−∠G2) . Note that ∠G1,∠G2,∠d �

1 is satisfied by ka � 1 in the CTC problem. This result
shows that q1, q2 ∈ R are scaled phase differences at low
frequencies.

From (8) several observations can be made. In general, as
the ipsilateral and contralateral source-to-control point trans-
fer paths become increasingly close in phase, e.g., the stereo
span decreases, the signals become increasingly large in mag-
nitude until reaching a singularity when the loudspeakers are
co-located or equidistant to each ear. In addition, when the
phase of the desired binaural signal matches the phase of
the ipsilateral or contralateral source-to-control point transfer
paths, the opposite loudspeaker is off. In these cases, the
remaining loudspeaker becomes a physical source and should
yield the most stable virtual image, completely robust to head
movements and translation (ignoring loudspeaker directivity).

Furthermore, at low frequencies q1 and q2 are sensitive
to the ratio of magnitudes |d|

|G1| and |d|
|G2| , respectively. If

G1, G2, d are taken to be rigid sphere HRTFs, the magnitudes
will ideally tend to 1 at low frequencies and q will be scaled
only by the inverse phase difference, or path length difference,
between the sources and the left or right ear.

In the following section, the particular solution for (8)
considering a rigid sphere head model will be analysed and
it will be shown that this solution is the stereo sine law when
the HRTFs are derived from the rigid sphere.
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5. LOW FREQUENCY SOURCE STRENGTHS
CONSIDERING A RIGID SPHERE

In the following, the incident sound field is represented by
e−jk·x, i.e., a plane wave, for both the target virtual source
and secondary sources (loudspeakers). Using the 1st order
approximation for the rigid sphere HRTF given in Section 2,
the radiation matrix and desired binaural signals for ka � 1
are then specified as

G ≈
[
1− j 3

2kL · xL 1− j 3
2kR · xL

1 + j 3
2kL · xL 1 + j 3

2kR · xL

]
, (9)

and

d ≈
[
1− j 3

2kS · xL
1 + j 3

2kS · xL

]
, (10)

respectively. It follows that the low frequency source strengths
for ka� 1 are

q ≈ 1

kR · xL − kL · xL

[
kR · xL − kS · xL
kS · xL − kL · xL

]
. (11)

Both the frequency dependent wavenumber k and the head
radius term a cancel out, leaving the result

q ≈ 1

cos ΘRL − cos ΘLL

[
cos ΘRL − cos ΘSL

cos ΘSL − cos ΘLL

]
. (12)

The final simplification is to consider the horizontal plane
only, so that in terms of ISO spherical coordinates, (θ, φ),
the inclination θ = π

2 [16]. Note that in the horizontal plane

cos ΘLL = cos
(
φL − φ

′

L

)
where φL and φ

′

L are the left-
most plane wave angle of arrival and the left ear angle, re-
spectively, measured from the x axis [17]. This can be ex-
pressed as cos ΘLL = − sin

(
γL − φ

′

L

)
, where positive γL

is now taken to be the plane wave azimuth displacement from
the listener’s mid-sagittal plane in the counter-clockwise di-
rection. Also note γL = −γR for the symmetric two channel
loudspeaker configuration.

With these further simplifications, for ka� 1 the follow-
ing important relationship is obtained:

q ≈ 1∑2
n=1 gn

sin
(
γL + φ

′

L

)
+ sin

(
γS − φ

′

L

)
sin
(
γL − φ

′

L

)
− sin

(
γS − φ

′

L

) , (13)

which is in fact the stereo sine law normalised by the sum of
the loudspeaker gains, where the gains are defined as g1 ≡
sin
(
γL + φ

′

L

)
+sin

(
γS − φ

′

L

)
and g2 ≡ sin

(
γL − φ

′

L

)
−

sin
(
γS − φ

′

L

)
[18]. This solution conveniently accounts for

head rotation which can be exploited in an adaptive system,
as is done for Compensated Amplitude Panning (CAP) [19].

The result given by (13) shows that the 1st order ap-
proximation of the CTC source strengths is the stereo sine

law when the radiation matrix and desired binaural signal
commonly originate from the 1st order far field rigid sphere
HRTFs. Based on this finding, and the established accuracy
of the rigid sphere head model at low frequencies, it is ex-
pected that the low frequency source strengths derived from
mannequin HRTFs in the same manner will also converge to
the stereo sine law in the low frequencies.

The following section uses measured data to show that the
source strengths created from mannequin HRTFs do converge
to the stereo sine law for virtual source angles in the horizon-
tal plane under the stated assumptions. Note that in this work,
only the forward facing case is analysed in support of brevity.

6. EXPERIMENTAL VERIFICATION

To verify that the stereo sine law is a 1st order approximation
for the source strengths created using human far field HRTFs,
KEMAR HRTFs openly available from the Institut fur Tech-
nische Akustik at Technische Universitat Berlin (TU-Berlin)
were used [20]. The chosen HRTFs were measured at a dis-
tance of two metres from the centre of the KEMAR head [20].

For the simulation, the two channel CTC loudspeaker ge-
ometry under consideration was chosen to match the classic
stereo configuration such that the left and right loudspeakers
were placed at angles γL = 30◦ and γR = 330◦, respec-
tively. Accordingly, the KEMAR HRTFs corresponding to
those angles were used in the formulation of G to approxi-
mate plane waves incident on the mannequin head from those
directions. Source strengths for a range of virtual source an-
gles γS ∈ [0◦, 360◦) were calculated at one degree incre-
ments also using the corresponding HRTFs from the KEMAR
measurements for d. These source strengths, q, were calcu-
lated according to (5).

The following analysis will focus on the low frequency
behaviour of the calculated q signals.

7. EXPERIMENTAL RESULTS

Figure 1 shows the real and imaginary components of the cal-
culated q signals for f ≈ 52 Hz, over the range of virtual
source angles γS ∈ [0◦, 360◦). Overlaid is the stereo sine law
(for zero head rotation) calculated for the same set of virtual
source angles.

The results show that the real components tend to the
stereo panning signals, L and R (see (13)), and that the imag-
inary components are near zero, as expected. Also, there is
symmetry about the interaural axis associated with the rigid
sphere model.

For comparison, Figures 2 and 3 show the behaviour of
q1 (the left loudspeaker (30◦) signal) over a larger range of
frequencies, f ∈ [52, 1000] Hz. The two surface plots are
used to show the magnitude (in dB) of the real and imagi-
nary components of q1 as functions of frequency and virtual
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source angle γS , respectively. Magnitudes below -40 dB ap-
pear black, and below -80 dB appear white. Data for q2 was
omitted for brevity, but it exhibited identical trends mirrored
about the KEMAR’s mid-sagittal plane.

Figure 2 shows that the real component maintains a sim-
ilar envelope across frequency except for a gradual roll-off
around 400 Hz for virtual sources placed around 90◦. As ex-
pected from (8), the magnitude is zero for the virtual source
co-located with the opposite loudspeaker (330◦). For the op-
posite loudspeaker position mirrored about the interaural axis
(210◦), q1 is also low in magnitude across frequency (this
trend shifts inward in angle closer to 1000 Hz). Even up to
1000 Hz a single loudspeaker provides most of the energy
when the virtual source is co-located with the loudspeaker
front and rear mirror positions.

Figure 3 gives some insight into this phenomenon. When
the virtual source is co-located with the physical loudspeaker
position, the imaginary component is essentially zero. Below
approximately 400 Hz, the imaginary component is below -40
dB for virtual sources in the front horizontal plane within the
span of the loudspeakers. For the loudspeaker rear mirror po-
sition, the imaginary component becomes increasingly large
as frequency increases, indicating some amount of frequency-
dependent delay is eventually required in order to reproduce
the rear source image, even if the magnitude of the ipsilateral
loudspeaker still dominates in these situations.

Fig. 1. Real and imaginary components of q1, q2 for f ≈ 52
Hz versus sine law signals, L and R, as functions of virtual
source angle γS .

8. CONCLUSION

In this paper, the analytical solution for the two loudspeaker
CTC source strengths was presented assuming plane wave
sources. It was shown for low frequency reproduction that
this solution amounts to a scaled ratio of phase differences
between the transfer functions used for the radiation matrix
and the desired binaural signal.

It was shown using the rigid sphere head model that the
low frequency approximation of the CTC source strengths

Fig. 2. Real component of q1 as a function of virtual source
angle γS and frequency up to 1000 Hz.

Fig. 3. Imaginary component of q1 as a function of virtual
source angle γS and frequency up to 1000 Hz.

considering an incident plane wave virtual source is equiv-
alent to the stereo sine law when both the radiation matrix
elements and desired binaural signal are commonly derived
from the far field rigid sphere HRTF.

Due to the established accuracy of the rigid sphere head
model compared to human HRTFs in the low frequencies,
it was predicted that the low frequency source strengths for
a more realistic far field HRTF, i.e., mannequin or human,
would also converge to the stereo sine law in the low fre-
quency limit. To test this hypothesis, publicly available KE-
MAR HRTFs supplied by TU-Berlin were used to create the
source strengths. It was shown that for low frequencies, the
real component of the solution aligns well with the stereo sine
law while the imaginary component was comparatively small,
confirming the proposed hypothesis.

These simulation results suggest CTC systems can be ap-
proximated at low frequencies to a desired accuracy with only
amplitude panning, under the stated assumptions. The valid-
ity of this solution breaks down with increasing frequency as
the imaginary component of the solution grows in magnitude,
for close proximity sources and for mismatches in transfer
functions.
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