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ABSTRACT

In almost all adaptive dereverberation algorithms based on
the multi-channel linear prediction (MCLP) model, it is as-
sumed that the filter length can cover the reverberation time.
However, in many practical situations, a deficient length fil-
ter, whose length is less than the reverberation time, is em-
ployed in consideration of computational cost. A deficient
length filter fails to fully model the late reverberation, re-
sulting in degraded performance. In this paper, we present a
new MCLP-based adaptive dereverberation algorithm to im-
prove the dereverberation performance when using a deficient
length filter. We introduce a gain and use the filter coefficients
estimated from the previous frame to track the MCLP model-
ing errors of the current frame. The gain and the filter coeffi-
cients are jointly optimized and solved by using an alternating
minimization technique. Experimental results show the supe-
riority of the proposed algorithm. The shorter the filter length
is, the more advantageous the proposed algorithm is.

Index Terms— Dereverberation, multi-channel linear
prediction, deficient length filter, adaptive processing

1. INTRODUCTION

Speech signals captured by distant microphones within an en-
closure are usually contaminated by reverberation. To allevi-
ate the negative effect of reverberation, various dereverbera-
tion techniques have been proposed [1]. At present, multi-
channel linear prediction (MCLP) [2] has been considered
to be one of the most appealing frameworks for dereverber-
ation. MCLP utilizes an autoregressive filter to predict late
reverberation using past microphone signals, and it is able to
preserve speech quality while suppressing reverberation ef-
fectively [3].

To cope with adaptive processing, Yoshioka [4, 5] applies
a recursive least squares (RLS) algorithm to update the fil-

This work was supported in part by the National Key R&D Plan of China
(No. 2016YFB1001404) and the China National Nature Science Founda-
tion (No. 61573357, No. 61503382, No. 61403370, No. 61273267, No.
91120303). This work was sponsored by CCF-Tencent Open Fund (No.
RAGR20180106) and Xueersi Cooperation Fund.

ter coefficients. Jukić [6, 7] exploits a constrained objective
function to deal with the signal cancellation problem when us-
ing a small forgetting factor in the RLS algorithm. Braun [8]
further estimates the filter coefficients using a Kalman filter.
In [4, 9, 10], it is recommended that the filter length should
cover the reverberation time. Unfortunately, both the RLS al-
gorithm and the Kalman filter suffer from high computational
complexity, e.g., the computational complexity of the RLS al-
gorithm is O(N2). Thus, in order to minimize the processing
delay in practice, a deficient length filter is preferred, i.e., the
actual filter length is typically less than the reverberation time.
A deficient length filter is unable to fully model the late rever-
beration, resulting in degraded dereverberation performance.
To the best of our knowledge, little attention has been paid to
adaptive dereverberation using a deficient length filter.

In this paper, a new MCLP-based adaptive dereverber-
ation algorithm is proposed to improve the dereverberation
performance in the case of using a deficient length filter. As-
suming that the filter coefficients are slowly time-varying, we
use a gain and the filter coefficients obtained from the pre-
vious frame to track the MCLP modeling errors of the cur-
rent frame. Furthermore, the gain and the filter coefficients
are jointly optimized and they are solved by an alternating
minimization technique [11]. The proposed algorithm has
the same computational complexity as the RLS algorithm,
but achieves better dereverberation performance with a defi-
cient length filter. Moreover, the proposed algorithm becomes
identical to the RLS algorithm if the gain is forced to be zero.

2. MCLP MODEL

We consider a single speech source captured by M micro-
phones in a noiseless reverberant environment. Let xm(n, k)
denote the short-time Fourier transform (STFT) representa-
tion of the m-th microphone signal at time index n and fre-
quency index k. The first microphone signal can be decom-
posed as x1(n, k) = d(n, k) + u(n, k), where d(n, k) is the
desired signal and u(n, k) is the late reverberation. In the fol-
lowing, we omit the frequency index k, since each subband
can be processed independently. The MCLP model [2] can be
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written as

x1(n) = d(n) + cH(n)x̃τ,Lc(n)︸ ︷︷ ︸
u(n)

, (1)

where c(n) ∈ CMLc×1 is a prediction filter containing Lc
taps per channel, (.)H denotes the conjugate transposition op-
erator and x̃τ,Lc(n) ∈ CMLc×1 is a microphone signal buffer
defined as

x̃τ,Lc(n) = [x1(n− τ), . . . , xM (n− τ), . . . ,

x1(n− τ − Lc + 1), . . . , xM (n− τ − Lc + 1)]
T
, (2)

where (.)T denotes the transposition operator and τ is a pre-
diction delay corresponding to the duration of the early rever-
beration.

However, as mentioned in the introduction, in order to re-
duce the processing delay in practice, a deficient length filter
is often used, i.e., the actual filter length is less than the re-
verberation time. A deficient length filter can not model the
late reverberation well, and modeling errors can result in re-
duced dereverberation performance. The goal of this work
is to design an adaptive dereverberation algorithm that takes
into account MCLP modeling errors so that it can suppress
reverberation more accurately with a deficient length filter.

3. PROPOSED DEREVERBERATION ALGORITHM

Suppose that in practice we use a filter g(n) of length Lg
(Lg < Lc) to predict the late reverberation1, we write c(n)
and x̃τ,Lc(n), respectively, as

c(n) =

[
g(n)
c̄(n)

]
, x̃τ,Lc(n) =

[
x̃τ,Lg (n)

x̃τ+Lg,Lc−Lg (n)

]
, (3)

where c̄(n) is the prediction filter corresponding to the signal
buffer x̃τ+Lg,Lc−Lg (n). Then Eq. (1) can be rewritten as

x1(n) = d(n) + gH(n)x̃τ,Lg (n) + e(n), (4)

where e(n) = c̄H(n)x̃τ+Lg,Lc−Lg (n) represents the model-
ing error term. We use dmclp(n) = x1(n)−gH(n)x̃τ,Lg (n) to
represent the output of the MCLP, then Eq. (4) can be rewrit-
ten after some manipulations as

dmclp(n) = d(n) + e(n). (5)

Just like the single-channel speech enhancement method
[12], we estimate e(n) by applying a gain w(n) to dmclp(n),
that is, ê(n) = w(n)dmclp(n), where superscript ˆ denotes an
estimated value. If we use the definition of dmclp(n) directly,
a good estimate of g(n) is required to obtain ê(n). However,

1Although g(n) ∈ CMLg×1, for clarity of presentation, we use Lg to
represent the filter length when given a microphone array with M micro-
phones in advance.

this is not easy to achieve since the best available estimate at
time index n and before estimating e(n) is g(n−1). To solve
this issue, we assume that the reverberation environment is
stationary or the filter coefficients are slowly time-varying.
Under the assumptions made above, we can get

ê(n) = w(n)
[
x1(n)− gH(n− 1)x̃τ,Lg (n)

]
. (6)

Now the gain w(n) and the filter g(n) can be estimated in
the minimum mean-square error (MMSE) sense by minimiz-
ing the cost function

J (w(n),g(n)) = E
{
|dmclp(n)− ê(n)− d(n)|2

}
. (7)

Jointly minimizing (7) with respect to w(n) and g(n) is not
straightforward. Here, we resort to an alternating minimiza-
tion technique [11], which minimizes the cost function for
one variable while keeping the other one fixed. To be more
precise, we iteratively perform the following update rules for
each time index n:

1) ŵ(n) = arg min
w(n)

J (w(n)|ĝ(n− 1)) , (8)

2) ĝ(n) = arg min
g(n)

J (g(n)|ŵ(n)) , (9)

In the following subsections, we describe the procedures
for accomplishing (8) and (9).

3.1. Gain update

Given knowledge of the filter coefficients estimated from the
previous frame, the cost function J(w(n)|ĝ(n − 1)) can be
written as

J(w(n)|ĝ(n− 1)) = E
{
|(1− w(n))dmclp(n)− d(n)|2

}
,

(10)
where ĝ(n−1) is contained in dmclp(n). w(n) that minimizes
(10) is easily derived by setting ∂J(w(n)|ĝ(n−1))

∂w(n) = 0, leading
to

ŵ(n) = 1−
E{d∗mclp(n)d(n)}+ E{dmclp(n)d∗(n)}

2E{|dmclp(n)|2}
, (11)

where superscript ∗ denotes the complex conjugate. By as-
suming that d(n) and e(n) are independent and d(n) has zero
mean, i.e., E{d∗(n)e(n)} = 0, using Eq. (5), Eq. (11) can be
rewritten as

ŵ(n) = 1− σ2
d(n)

E{|dmclp(n)|2}
, (12)

where σ2
d(n) = E{d(n)d∗(n)} is the power spectral density

(PSD) of the desired signal.
In order to estimate σ2

d(n), the exponential decay model
[13, 14] is employed in calculating the late reverberant PSD
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and σ̂2
d(n) is then obtained by using the spectral subtractive

method[5, 6], i.e.

σ̂2
x(n) = ασ̂2

x(n− 1) + (1− α)|x1(n)|2 (13)

σ̂2
u(n) = e

−6Rτ ln 10
T60fs σ̂2

x(n− τ) (14)

σ̂2
d̃
(n) = max{|x1(n)|2 − σ̂2

u(n), 0} (15)

σ̂2
d(n) = ασ̂2

d(n− 1) + (1− α)σ̂2
d̃
(n) (16)

where σ̂2
u(n) is the estimate of the late reverberant PSD, α

is a smoothing parameter, R is the STFT time shift in sam-
ples, T60 denotes the reverberation time and fs indicates the
sampling frequency in Hz.

In order to estimate E{|dmclp(n)|2}, the recursive averag-
ing approach can be used. Specifically,

E{|dmclp(n)|2} = βE{|dmclp(n− 1)|2}+
(1− β)|x1(n)− gH(n− 1)x̃τ,Lg (n)|2,

(17)

where β is a smoothing parameter.

3.2. Filter coefficients update

Given knowledge of the current gain ŵ(n), according to (9),
the filter estimate ĝ(n) requires that ∂J(g(n)|ŵ(n))

∂g(n) = 0. In
this operation, it is necessary to estimate E{x̃τ,Lg (n)d(n)},
but it is not easy to obtain.

Instead of solving (9), we can alternatively update ĝ(n)
using the maximum likelihood estimation (MLE) algorithm.
In this case, cost function (7) is not necessarily minimized.
Nevertheless, we found experimentally that using MLE also
allowed the proposed algorithm to have a better performance
than the comparison algorithms.

To begin with, we substitute ê(n) for e(n) and then insert
Eq. (6) into Eq. (4), obtaining

x1(n) =
d(n)

1− w(n)
+

[
gH(n)− w(n)gH(n− 1)

]
x̃τ,Lg (n)

1− w(n)
.

(18)
If we assume that the desired signal d(n) follows a zero-
mean complex Gaussian distribution with time-varying vari-

ance σ2
d(n) [2], i.e., p(d(n)) = 1

πσ2
d(n)

e
− |d(n)|2

σ2
d
(n) , using Eq.

(18), the weighted exponential likelihood function can be de-
fined as

L(g(n)) =

n∑
t=1

γn−t ln p (x1(t))

= −
n∑
t=1

γn−t
|x1(t)− g(n)x̃τ,Lg (t)− ê(t)|2

σ2
d(t)

+ c,

(19)

Algorithm 1 Proposed algorithm per subband.
Initialization: ĝ(0) = 0MLg×1, Φ(0) = IMLg

1: for n = 1, 2, 3, · · · do
2: Compute σ̂2

d(n) using (13), (14), (15), (16)
3: d̂mclp(n) = x1(n)− gH(n− 1)x̃τ,Lg (n)
4: Compute w(n) using (12)
5: k(n) =

Φ(n−1)x̃τ,Lg (n)
γσ̂2
d(n)+x̃Hτ,Lg (n)Φ(n−1)x̃τ,Lg (n)

6: Φ(n) = 1
γ

[
Φ(n− 1)− k(n)x̃Hτ,Lg (n)Φ(n− 1)

]
7: ĝ(n) = ĝ(n− 1) + k(n) [1− w(n)] d̂∗mclp(n)

8: d̂(n) = x1(n)− ĝH(n)x̃τ,Lg (n)− w(n)d̂mclp(n)

9: Output d̂(n) as the desired signal
10: end for

where 0 < γ < 1 is a forgetting factor and c is a constant
term with respect to g(n). The maximization of (19) requires
that ∂L(g(n))∂g(n) = 0, leading to

ĝ(n) = Φ(n)R(n), (20)

where

Φ(n) =

(
n∑
t=1

γn−t
x̃τ,Lg (t)x̃Hτ,Lg (t)

σ̂2
d(t)

)−1
, (21)

R(n) =

n∑
t=1

γn−t
x̃τ,Lg (t) [x∗1(t)− ê∗(t)]

σ̂2
d(t)

. (22)

By applying the matrix inversion lemma[15], ĝ(n) can be re-
cursively computed, yielding the proposed dereverberation al-
gorithm listed in Algorithm 1.

The proposed algorithm has the same computational com-
plexity as the RLS algorithm [4, 5], and degenerates into the
RLS algorithm when the gain w(n) is forced to be zero.

4. EXPERIMENTAL RESULTS

Two experiments were performed using 20 test utterances
with an average length of 25 s. Each test utterance contained
concatenated 8 utterances from the TIMIT database [16] and
the sampling frequency was 16 kHz. The reverberant ob-
servations were generated by convolving each test utterance
with measured room impulse responses (RIRs) from RE-
VERB challenge [3] and the source-microphone distance was
about 2 m. The STFT was computed using a 32 ms Hann
window with 50% overlap and the prediction delay in (2) was
set to τ = 2. As for the smoothing parameter, we took α
and β to be 0.5 and 0.3, respectively. The forgetting factor
was set at γ = 0.99 as proposed in [4, 5]. The performance
was evaluated using the five measures suggested in [3], i.e.,
the perceptual evaluation of speech quality (PESQ) [17], the
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Fig. 1. Improvements of performance measures versus fil-
ter length Lg in 1-channel (left), 2-channel (center) and 4-
channel (right) scenarios.

frequency-weighted segmental SNR (FWSSNR) [18], the
cepstral distance (CD) [18], the speech to reverberation mod-
ulation energy ratio (SRMR) [19] and the log likelihood ratio
(LLR) [18]. We reported the performance measures averaged
over all the test utterances.

For reference, we implemented the RLS algorithm [4, 5]
and the RLS algorithm followed by a post-filter (RLS-PF),
which simply treats the gain [1−w(n)] as a post-filter to fur-
ther suppress residual reverberation [20]. Unlike the proposed
algorithm, the gain in RLS-PF does not affect the update of
the prediction filter coefficients.

First, we evaluated the effect of filter length on the per-
formance of the algorithms in 1-channel, 2-channel and 4-
channel scenarios with T60 ≈ 500 ms. In [2, 6, 8], the filter
length Lg is typically set as Lg ≥ 15. Thus, to simulate the
use of deficient length filter, we set Lg ≤ 15 in this experi-
ment. Fig. 1 shows the positive improvements of PESQ and
FWSSNR compared to the unprocessed microphone signal
(i.e., the delta values). As can be seen from Fig. 1, the shorter
the filter length is, the more advantageous the proposed al-
gorithm is than the RLS algorithm. This is due to the fact
that as the filter length decreases, the MCLP modeling errors
become larger. Compared with the proposed algorithm, the
RLS algorithm can not deal with the modeling errors. We can
also find that the proposed algorithm is superior to RLS-PF at
different filter lengths, because the separate optimization of
RLS-PF is suboptimal with respect to the joint optimization
of the proposed algorithm. Fig. 2 shows spectrogram parts
of the clean signal, the reverberant microphone signal and the
processed signals obtained using the RLS algorithm and us-
ing the proposed algorithm when Lg = 3 and M = 2. It
can be observed that the proposed algorithm achieves more
reverberation suppression.

Next, we systematically evaluated the performance of the
algorithms in different reverberation scenarios. To simplify
the experiment, we consider two 2-channel scenarios with
T60 ≈ 500 ms and T60 ≈ 700 ms, respectively, which can
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Fig. 2. Spectrograms of clean signal, observed signal at the
first microphone and processed signal.

Table 1. Dereverberation results
Method PESQ FWSSNR CD SRMR LLR

[dB] [dB] [dB]
Reverberation time T60 ≈ 500 ms

Unprocessed 1.692 4.068 4.278 2.740 0.711
RLS 1.962 6.481 3.525 3.848 0.531
RLS-PF 1.979 6.964 3.436 4.256 0.520
Proposed 2.008 7.301 3.353 4.490 0.500

Reverberation time T60 ≈ 700 ms
Unprocessed 1.658 3.816 4.351 2.382 0.742
RLS 1.899 5.731 3.552 3.546 0.573
RLS-PF 1.894 6.009 3.505 3.922 0.549
Proposed 1.918 6.292 3.445 4.039 0.532

be regarded as the most common reverberation scenarios in
real-world environments. In order to simulate the use of defi-
cient length filter, we set the filter length as Lg = 9. Table 1
reports the comparative results in terms of PESQ, FWSSNR,
CD, SRMR and LLR. As observed, the proposed algorithm
outperforms other algorithms in all the measures.

5. CONCLUSIONS

In this paper, we proposed a new adaptive dereverberation al-
gorithm considering the MCLP modeling errors in the case
of using a deficient length filter. The filter coefficients and
the gain used to track the modeling errors are joint optimized.
Experimental results show the superiority of the proposed al-
gorithm when using a deficient length filter. Since computa-
tional cost should be paid attention to in real applications, the
proposed algorithm shows more practical potentialities.
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