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ABSTRACT
This paper proposes an alternative algorithm for the multi-
channel variational autoencoder (MVAE), a recently proposed
multichannel source separation approach. While MVAE is
notable for its impressive source separation performance, its
convergence-guaranteed optimization algorithm and the fact
that it allows us to estimate source-class labels simultane-
ously with source separation, there are still two major draw-
backs, namely, the high computational complexity and the
unsatisfactory source classification accuracy. To overcome
these drawbacks, the proposed method employs an auxiliary
classifier VAE, which is an information-theoretic extension of
the conditional VAE, for learning the generative model of the
source spectrograms. Furthermore, with the trained auxiliary
classifier, we introduce a novel algorithm for the optimiza-
tion that can both reduce the computational time and improve
the source classification performance. We call the proposed
method “fast MVAE (fMVAE)”. Experimental evaluations re-
vealed that fMVAE achieved source separation performance
comparable to that of MVAE and a source classification accu-
racy rate of about 80% while reducing computational time by
about 93%.

Index Terms— Multichannel source separation, multi-
channel variational autoencoder, auxiliary classifier, source
classification

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating
out individual source signals from microphone array inputs
when both the sources and the mixing methodology are un-
known. The frequency-domain BSS approach allows us to
perform instantaneous mixture separation and provides the
flexibility of utilizing various models for the time-frequency
representations of source signals. For example, independent
vector analysis (IVA) [1, 2] solves frequency-wise source sep-
aration and permutation alignment simultaneously by assum-
ing that the magnitudes of the frequency components originat-
ing from the same source tend to vary coherently over time.
Multichannel extensions of non-negative matrix factorization
(NMF), e.g., multichannel NMF (MNMF) [3, 4] and inde-
pendent low-rank matrix analysis (ILRMA) [5, 6], provide an
alternative solution to jointly solving these two problems by
adopting the NMF concept for the source spectrogram mod-
eling. Specifically, the power spectrograms of the underlying
source signals are approximated as the linear sum of a limited
number of basis spectra scaled by time-varying amplitudes. It
is noteworthy that IVA is equivalent to ILRMA in a particular
case where only a single basis spectrum consisting of ones is
used for each source signal. From this standpoint, ILRMA
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can be interpreted as a generalized IVA method that incor-
porates a source model with stronger representation power,
which has been shown to significantly improve source sepa-
ration performance [6].

Motived by this fact and the high capability of deep neu-
ral networks (DNNs) as regards spectrogram modeling, some
attempts have recently been made to use DNNs as source
models instead of the NMF model [7]–[12]. The multichan-
nel variational autoencoder (MVAE) [11] is one such method,
and it has achieved great success in multi-speaker separation
tasks. MVAE trains a conditional VAE (CVAE) [13, 14] us-
ing power spectrograms of clean speech samples and the cor-
responding speaker ID as auxiliary label inputs so that the
trained decoder distribution can be used as a universal gen-
erative model of source signals, where the latent space vari-
ables and the class labels are the unknown parameters. At
the separation phase, MVAE iteratively updates the separa-
tion matrix using the iterative projection (IP) method [15]
and the unknown parameters of the source generative model
with backpropagation. The separated signals are obtained
by applying the estimated separation matrix to the observed
mixture signals. This optimization algorithm is notable in
that convergence to a stationary point is guaranteed and it al-
lows the source-class labels to be estimated simultaneously
with source separation. However, there are two major lim-
itations. Firstly, the backpropagation needed for each iter-
ation causes the optimization algorithm to be highly time-
consuming, which can be troublesome in practical applica-
tions. Secondly, the encoder and decoder in a regular CVAE
are free to ignore the class labels by finding networks that can
reconstruct any data without using additional information. In
such a situation, the additional class labels will have a lim-
ited effect on spectrogram generation, which therefore leads
to an unsatisfactory source classification result as we show in
Section 4.

To address these limitations, this paper proposes “fast
MVAE (fMVAE)”, which employs an auxiliary classifier
VAE (ACVAE) [16] to learn the generative distribution of
source spectrograms and adopts a trained auxiliary classifier
for optimization at the separation phase.

2. MVAE FOR DETERMINED MULTICHANNEL
SOURCE SEPARATION

2.1. Problem formulation

Let us consider a determined situation where I source signals
are captured by I microphones. Let xi(f, n) and sj(f, n)
denote the short-time Fourier transform (STFT) coefficients
of the signal observed at the i-th microphone and the j-
th source signal, where f and n are the frequency and
time indices respectively. We denote the vectors contain-
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ing x1(f, n), . . . , xI(f, n) and s1(f, n), . . . , sI(f, n) by

x(f, n) = [x1(f, n), . . . , xI(f, n)]T ∈ CI , (1)

s(f, n) = [s1(f, n), . . . , sI(f, n)]T ∈ CI , (2)

where (·)T denotes the transpose. In a determined situation,
the relationship between observed signals and source signals
can be described as

s(f, n) = W H(f)x(f, n), (3)

W (f) = [w1(f), . . . ,wI(f)] ∈ CI×I , (4)

where W H(f) is called the separation matrix. (·)H denotes
the Hermitian transpose.

Let us assume that source signals follow the local Gaus-
sian model (LGM), i.e., sj(f, n) independently follows a
zero-mean complex proper Gaussian distribution with vari-
ance vj(f, n) = E[|sj(f, n)|2]

sj(f, n) ∼ NC(sj(f, n)|0, vj(f, n)). (5)

When sj(f, n) and sj′(f, n)(j 6= j′) are independent, s(f, n)
follows

s(f, n) ∼ NC(s(f, n)|0,V (f, n)), (6)

where V (f, n) = diag[v1(f, n), . . . , vI(f, n)]. From (3) and
(5), we can show that x(f, n) follows

x(f, n) ∼ NC(x(f, n)|0, (W H(f))−1V (f, n)W (f)−1).
(7)

Hence, the log-likelihood of the separation matrices W =
{W (f)}f and source model parameters V = {vj(f, n)}j,f,n
given the observed mixture signals X = {x(f, n)}f,n is
given by

log p(X|W,V)
c
= 2N

∑
f

log |detW H(f)|

−
∑
f,n,j

(
log vj(f, n) +

|wH
j (f)x(f, n)|2

vj(f, n)

)
, (8)

where =c denotes equality up to constant terms. (8) will be
split into frequency-wise source separation problems if there
is no additional constraint imposed on vj(f, n). This indi-
cates that there is a permutation ambiguity in the separated
components for each frequency.

2.2. Multichannel VAE

To eliminate the permutation ambiguity during the estimation
ofW , MVAE trains a conditional VAE (CVAE) to model the
complex spectrograms S = {s(f, n)}f,n of source signals
so that the spectral structures can be captured. CVAE con-
sists of an encoder network qφ(z|S, c) and a decoder network
pθ(S|z, c), where the network parameters φ and θ are trained
jointly using a set of labeled training samples {Sm, cm}Mm=1.
Here, c = {1, 2, . . . , C} denotes the corresponding class la-
bel indicating to which class the spectrogram S belongs. For
example, if we consider speaker identities as the class cate-
gory, c will be associated with a different speaker. CVAE is

trained by maximizing the following variational lower bound

J (φ, θ) = E(S,c)∼pD(S,c)[Ez∼qφ(z|S,c)[log pθ(S|z, c)]
−KL[qφ(z|S, c)||p(z)]], (9)

where E(S,c)∼pD(S,c)[·] denotes the sample mean over the
training examples {Sm, cm}Mm=1 and KL[·||·] denotes Kull-
back–Leibler divergence. Here, the encoder distribution
qφ(z|S, c) and the prior distribution of the latent space vari-
able p(z) are expressed as Gaussian distributions

qφ(z|S, c) = N (z|µφ(S, c),diag(σ2
φ(S, c))), (10)

p(z) = N (z|0, I), (11)

where µφ(S, c), σ2
φ(S, c) are the encoder network outputs.

The decoder distribution pθ(S|z, c) is defined as a zero-mean
complex proper Gaussian distribution and a scale parameter
g is incorporated to eliminate the energy difference between
the normalized training data and test data. Hence, the decoder
distribution is expressed as

pθ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, v(f, n)), (12)

v(f, n) = g · σ2
θ(f, n; z, c), (13)

where σ2
θ(f, n; z, c) denotes the (f, n)-th element of the de-

coder output. It is worth mentioning that the decoder dis-
tribution (12) is given in the same form as the LGM (5) so
that the trained decoder distribution can be used as a universal
generative model with the ability to generate complex spec-
trograms belonging to all the source classes involved in the
training examples. If we use pθ(Sj |zj , cj , gj) to express the
generative model of the complex spectrogram of the source
j, a stationary point of the log-likelihood (8) that we want to
maximize can be searched by iteratively updating (A) the sep-
aration matricesW using the iterative projection (IP) method
[15], (B) the CVAE source model parameters Ψ = {zj , cj}j
with backpropagation, and (C) the global scale parameter G =
{gj}j with the following update rule

gj ←
1

FN

∑
f,n

|yj(f, n)|2

σ2
θ(f, n; zj , cj)

, (14)

where yj(f, n) = wH
j (f)x(f, n). Note that since the class la-

bels are the model parameters estimated during the optimiza-
tion, MVAE is also able to perform source classification.

3. PROPOSED METHOD: FAST MVAE

While MVAE is noteworthy in that it works reasonably well
for source separation and has the capability to perform source
classification simultaneously, there is still huge room for im-
provement in the source classification performance. With a
regular CVAE, which imposes no restrictions on the way in
which the encoder and decoder may use the class labels, the
encoder and decoder are free to ignore c by finding a distri-
bution that satisfies qφ(z|S, c) = qφ(z|S) and pθ(S|z, c) =
pθ(S|z). As a result, c will have little effect on the gener-
ation of source spectrograms and that will limit source clas-
sification performance. To avoid such situations, this paper
proposes using an auxiliary classifier VAE [16] for learning
the generative distribution pθ(S|z, c).
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3.1. Auxiliary classifier VAE

Auxiliary classifier VAE (ACVAE) [16] is a variant of CVAE
that incorporates information-theoretic regularization [17] to
assist the decoder outputs to be correlated as far as possible
with the class labels c by maximizing the mutual information
between c and S ∼ pθ(S|z, c) conditioned on z. The mutual
information is expressed as

I(c,S|z)

= Ec∼p(c),S∼pθ(S|z,c),c′∼p(c|S)[log p(c′|S)] +H(c), (15)

where H(c) represents the entropy of c that can be consid-
ered as a constant term. However, it is difficult to optimize
I(c,S|z) directly since it requires access to the posterior
p(c|S). Fortunately, we can obtain a variational lower bound
of the first term of I(c,S|z) by using a variational distribu-
tion r(c|S) to approximate p(c|S):

Ec∼p(c),S∼pθ(S|z,c),c′∼p(S|c)[log p(c′|S)]

=Ec∼p(c),S∼pθ(S|z,c),c′∼p(S|c)[log
r(c′|S)p(c′|S)

r(c′|S)
]

≥Ec∼p(c),S∼pθ(S|z,c),c′∼p(S|c)[log r(c′|S)]

=Ec∼p(c),S∼pθ(S|z,c)[log r(c|S)], (16)

the equality of which holds if r(c|S) = p(c|S). There-
fore, we can indirectly maximize I(c,S|z) by increasing the
lower bound with respect to pθ(S|z, c) and r(c|S). One way
to realize this involves expressing the variational distribu-
tion as a neural network rψ(c|S) and training it along with
qφ(z|S, c) and pθ(S|z, c). rψ(c|S) is called an auxiliary
classifier. Therefore, the regularization term that we would
like to maximize with respect to φ, θ, ψ becomes

L(φ, θ, ψ) (17)
= E(S,c)∼pD(S,c),qφ(z|S,c)[Ec∼p(c),S∼pθ(S|z,c)[log rψ(c|S)]],

where
∑C
k=1 rψ(c = k|S) = 1. In the regularization term

(17), the auxiliary classifier is trained only using recon-
structed spectrograms, which is undesirable since it may limit
the capability of the trained classifier of classifying the origi-
nal spectrograms. To remedy this, ACVAE also includes the
cross-entropy

I(ψ) = E(S,c)∼pD(S,c)[log rψ(c|S)] (18)

in the training criterion. The entire training criterion is thus
given by

J (φ, θ) + λLL(φ, θ, ψ) + λII(ψ), (19)

where λL ≥ 0 and λI ≥ 0 are weight parameters.

3.2. Fast algorithm

Note that the auxiliary classifier rψ(c|S) both assists the
encoder and decoder to learn a more disentangled representa-
tion, and provides an alternative to the backpropagation pro-
cess in the original MVAE optimization, which significantly
reduces the computational time. Specifically, since the maxi-
mum of the distribution p(zj , cj |Sj) = p(zj |Sj , cj)p(cj |Sj)
searched with backpropagation in the step (B) can be ap-
proximately obtained with the trained auxiliary classifier

Fig. 1. Configuration of the room where ◦ and × represent
the position of microphones and sources respectively.

distribution and the encoder distribution p(zj , cj |Sj) ≈
pθ(z|Sj , cj)rψ(cj |Sj), we can replace the step (B) with the
forward calculation of the encoder and the auxiliary classifier.
The proposed fast algorithm is summaried as follows:

1. Train φ, θ and ψ using (19).
2. InitializeW .
3. Iterate the following steps for each j:

(a) Calculate the temporarily signals
Sj = {w(f)H

j x(f, n)}f .

(b) Update cj ← argmaxcj∈{1,2,...,C} rψ(cj |Sj).

(c) Update zj ← µφ(Sj , cj).

(d) Update gj using (14).

(e) Update wj(0), . . . ,wj(F ) using IP.

4. EXPERIMENTS

To evaluate the effect of incorporating an auxiliary classi-
fier into both the source model training and the optimiza-
tion process, we conducted experiments designed to compare
the multi-speaker separation performance, source classifica-
tion accuracies and computational times of fMVAE and the
conventional methods, i.e., ILRMA [5, 6] and MVAE [11].

4.1. Experimental conditions
We excerpted speech utterances from two male speakers
(‘SM1’, ‘SM2’) and two female speakers (‘SF1’, ‘SF2’) from
the Voice Conversion Challenge (VCC) 2018 dataset [18].
The audio files for each speaker were about 7 minutes long
and manually segmented into 116 short sentences, where 81
and 35 sentences (about 5 and 2 minutes long, respectively)
were used as training and test sets, respectively. The mixture
signals were created by using simulated two-channel record-
ings of two sources where the room impulse responses were
synthesized using the image method. We tested two different
reverberant conditions where the reverberation times (RT60)
were set at 78 and 351 ms, respectively. Fig. 1 shows the
configuration of the room. We generated test data involving
4 speaker pairs and 10 sentences for each pair, namely there
were a total of 40 test signals, each of which was about 4 to
7 seconds long. All the speech signals were resampled at 16
kHz. The STFT was computed using a Hamming window
that was 256 ms long and the window shift was128 ms.

ILRMA was run for 100 iterations and both the proposed
method and MVAE were run for 40 iterations. To initializeW
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Fig. 2. Network architectures of the encoder and decoder used for MVAE and fMVAE and the classifier used for fMVAE.
The inputs and outputs are 1-dimensional data, where the frequency dimension of spectrograms is regarded as the channel
dimension. “w”, “c” and “k” denote the width, channel number and kernel size, respectively. “Conv”, “Deconv”, “BN” and
“GLU” denote 1-dimensional convolution and deconvolution, batch normalization, gated linear unit, respectively.

Table 1. Average SDR, SIR and SAR scores of ILRMA,
MVAE and fMVAE. The bold font shows the highest scores.

method RT60 = 78 ms
SDR [dB] SIR [dB] SAR [dB]

ILRMA 14.8997 21.3277 18.0584
MVAE 21.5912 27.2663 25.1616
fMVAE 22.5976 29.8476 24.8967

method RT60 = 351 ms
SDR [dB] SIR [dB] SAR [dB]

ILRMA 4.6840 11.6284 7.2364
MVAE 8.3157 18.0834 9.2206
fMVAE 6.7814 15.7728 7.7883

Table 2. Computational times of MVAE, fMVAE and IL-
RMA. MVAE and fMVAE were initialized with run ILRMA
algorithm for 30 iterations in CPU and run 40 iterations of the
optimization algorithms in CPU or GPU. ILRMA runs 100 it-
erations in CPU.

rumtime/iteration[sec] total [sec]
MVAE (GPU) 6.071632 260.5953
fMVAE (CPU) 0.389762 21.54129
fMVAE (GPU) 0.097272 17.56694
ILRMA (CPU) 0.113571 18.38221

for MVAE and fMVAE, we used ILRMA, which we ran for 30
iterations. Adam [19] was used for training CVAE and AC-
VAE, and estimating the latent variables in MVAE. The net-
work architectures used for CVAE and ACVAE are shown in
Fig. 2. Note that we used the same network architectures for
CVAE and ACVAE as we used for the encoder and decoder.
All the networks were designed to be fully convolutional with
gated linear units [20] so that the inputs were allowed to have
arbitrary lengths. The programs were run using an Intel (R)
Core i7-6800K CPU@3.40 GHz and a GeForce GTX 1080Ti
GPU.

4.2. Results
We calculated the average signal-to-distortion ratios (SDR),
signal-to-interference ratios (SIR) and signal-to-artifact ratios

Table 3. Accuracy rates of source classification obtained with
MVAE and fMVAE.

all iterations final estimation
MVAE 27.91% 37.50%
fMVAE 78.63% 80.00%

(SAR) [21] over the 40 test signals to evaluate the source sep-
aration performance and measured the computational times.
Table 1 and Table 2 show the source separation results ob-
tained under different RT60 conditions and the computational
times of ILRMA, MVAE and fMVAE, respectively. fMVAE
was about 15 times faster than the original MVAE and even
lightly faster than ILRMA in GPU machines. Furthermore,
it is noteworthy that fMVAE achieved source separation per-
formance comparable to that of the original MVAE. As the
results show, MVAE and fMVAE significantly outperformed
ILRMA in terms of all the source separation performance cri-
teria, which confirmed the effect of the incorporation of the
CVAE source model. fMVAE obtained a higher SDR and SIR
than MVAE in a slightly reverberant environment, but the per-
formance deteriorated slightly when RT60 became long. It is
interesting to further compare fMVAE with MVAE in highly
reverberant environments, which is one direction for our fu-
ture work.

To evaluate the performance of source classification, we
computed the classification accuracy rates over the results es-
timated in each iteration and in the final estimation alone. Ta-
ble 3 provides results showing that fMVAE significantly im-
proved source classification accuracy achieving an 80% accu-
racy rate. Our future work will also include further improving
the source classification accuracy.

5. CONCLUSIONS

This paper proposed a fMVAE method that (i) uses an auxil-
iary classifier VAE instead a regular CVAE to learn the gen-
erative distribution of source signals; (ii) employs a trained
auxiliary classifier and encoder for optimization. fMVAE al-
lows us to significantly reduce the computational time and
improve the source classification performance. The results
revealed that fMVAE was about 15 times faster than the orig-
inal MVAE and achieved a source classification accuracy rate
of about 80% with notable source separation performance.
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