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ABSTRACT

A multi-channel speech source separation with a deep neural net-
work which optimizes not only the time-varying variance of a speech
source but also the multi-channel spatial covariance matrix jointly
without any iterative optimization method is shown. Instead of a
loss function which does not evaluate spatial characteristics of the
output signal, the proposed method utilizes a loss function based
on minimization of multi-channel Itakura-Saito Distance (MISD),
which evaluates spatial characteristics of the output signal. The cost
function based on MISD is calculated by the estimated posterior
probability density function (PDF) of each speech source based on a
time-varying Gaussian distribution model. The loss function of the
neural network and the PDF of each speech source that is assumed
in multi-channel speech source separation are consistent with each
other. As a neural-network architecture, the proposed method uti-
lizes multiple bidirectional long-short term memory (BLSTM) lay-
ers. The BLSTM layers and the successive complex-valued signal
processing are jointly optimized in the training phase. Experimental
results show that more accurately separated speech signal can be ob-
tained with neural network parameters optimized based on the pro-
posed MISD minimization than that with neural network parameters
optimized based on loss functions without spatial covariance matrix
evaluation.

Index Terms— Deep Learning, speech source separation, bidi-
rectional long-short term memory, multi-channel Itakura-Saito dis-
tance

1. INTRODUCTION

Speech source separation techniques which separates multiple
speech sources from multiple mixtures [1] are effective in human-
listening devices and automatic speech recognition under multi-
talkers conditions. In the speech source separation research field,
multi-microphone based blind speech source separation in time-
frequency domain has been actively studied such as independent
component analysis (ICA) [2], sparseness based method [3], and lo-
cal Gaussian modeling (LGM) based method [4]. These separation
methods utilize predetermined signal models such as super-Gaussian
models of speech sources, sparseness models at each time-frequency
point, or Gaussian distribution models with time-varying covariance
matrices. These approaches successfully separate speech sources
in each frequency bin separately. However, additional models for
frequency characteristics of speech sources is needed to solve the
well-known inter-frequency permutation ambiguity problem [5].
Recently, blind speech source separation techniques which does not
require for permutation problem solvers have been studied, e.g., In-
dependent vector analysis (IVA) [6, 7]. However, IVA also requires
for predetermined generative models for frequency characteristics
of speech sources such as a spherically symmetric multivariate

distribution, non-negative matrix factorization (NMF) models [8].
However, the conventional models are too simple to express fre-
quency characteristics of speech sources precisely.

Recently, neural network based noise reduction techniques have
been actively studied [9, 10, 11, 12, 13]. These approaches estimate
time-frequency masks like DUET [3]. Instead of the predetermined
speech source models, precise frequency characteristics of speech
sources are learned via a neural network. Multi-channel beamform-
ers with time-frequency masks learned by neural networks have been
also proposed [11, 14, 13, 15, 16]. However, these techniques are
noise reduction techniques, which assumes that there are only one
speech source and background noise. It is difficult to apply these
techniques for speech source separation directly.

Recently, speech source separation methods with neural network
masking have been proposed, e.g., permutation invariant training
(PIT) [17] , deep clustering [12, 18]. From the power spectral of the
microphone input signal, a time frequency mask which extracts each
source is estimated. Time-frequency masking based speech source
separation methods assume that multiple speech sources are sparse
enough in time-frequency domain. However, the sparseness assump-
tion is not always valid, and it produces unwanted speech distortion
in the output signal. Another neural network based speech source
separation techniques are extensions of conventional speech source
separation methods such as ILMA [8], LGM [4]. Instead of pre-
determined generative models for speech sources, neural-network
based generative models are utilized, e.g. IDLMA [19], LGM with
neural network [10], and multi-channel variational auto-encoder [20,
21]. However, in these methods, the neural-network is utilized for
only estimation of time-varying variance of speech sources. Multi-
channel covariance matrices are needed to be estimated in the other
ways. Therefore, iterative update procedures such as IP algorithm
[22], expectation-maximization (EM) algorithm [23] are still needed
in these frameworks for optimization of multi-channel covariance
matrices.

In this paper, a multi-channel speech source separation method
with multi-channel Itakura-Saito Distance (MISD) minimization cri-
teria is proposed. The proposed loss function evaluates not only the
time-varying variance of speech sources but also the spatial covari-
ance matrix. It is not needed to utilize additional iterative update
procedure for optimization of the multi-channel covariance matri-
ces. The multi-channel covariance matrices are estimated by us-
ing time-frequency masks which is estimated via a neural-network.
The time-varying variance of speech sources is also estimated via
the same neural network. The posterior probability density function
(PDF) of the speech sources is estimated via a time-varying multi-
channel Wiener filtering under the assumption that a PDF of a multi-
channel speech source signal is a LGM with a zero-mean vector and
a time-varying multi-channel covariance matrix [4]. The likelihood
function of the LGM is known to be equivalent with the MISD [24].
Therefore, the likelihood function of speech source separation are
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consistent with the proposed loss function for neural network opti-
mization. Inspired by success of the deep clustering [12, 18], the pro-
posed method utilizes multiple bidirectional long-short term mem-
ory (BLSTM) layers as the neural-network in the proposed method.
The BLSTM layers and the successive TV-MWF are jointly opti-
mized so as to minimize the MISD.

2. PROBLEM STATEMENT

2.1. Microphone input model

In this paper, multi-channel speech source separation is performed
at time-frequency domain. The microphone input signal at time-
frequency domain is defined as follows:

xl,k =

Ns∑
i=1

ci,l,k, (1)

where xl,k (l is the frame index and k is the frequency index) is
the multi-channel microphone input signal at each time-frequency
point, the number of the microphones is Nm, Ns is the number of
the speech sources, and ci,l,k is the ith speech signal. The objective
of multi-channel speech source separation is to separate ci,l,k from
the microphone input signal, xl,k.

2.2. Speech source separation based on local Gaussian modeling

Local Gaussian modeling (LGM) based speech source separation
methods [4] separate multiple speech sources under the assumption
that a prior probability density function (PDF) of each speech source
belongs to a time-varying Gaussian distribution with a zero-mean
vector and a time-varying covariance matrix as follows:

pM(ci,l,k) = N (ci,l,k|0,Ri,l,k), (2)

where M is set to the predefined model parameter and Ri,l,k is
the time-varying multi-channel covariance matrix of the ith speech
source. So as to reduce the number of the time-varying parameters,
the time-varying covariance matrix Ri,l,k is defined as follows:

Ri,l,k = vi,l,kRi,k, (3)

where vi,l,k is the time-varying variance of the ith speech source,
Ri,k is the multi-channel covariance matrix of the ith speech source,
and M is defined as {vi,l,k,Ri,k}.

The LGM based approaches estimate the posterior PDF of the
speech source pM(ci,l,k|xl,k) with the given microphone input sig-
nal. Under the LGM assumption, pM(ci,l,k|xl,k) is also a time-
varying multi-channel Gaussian distribution defined as follows:

pM(ci,l,k|xl,k) = N (ci,l,k|µi,l,k,Vi,l,k), (4)

where µi,l,k and Vi,l,k are the conditional mean vector and the con-
ditional covariance matrix of ci,l,k, respectively. µi,l,k and Vi,l,k

are calculated as follows:

µi,l,k = Wi,l,kxi,l,k, (5)

Vi,l,k = (I −Wi,l,k)Ri,l,k, (6)
where I is a Nm × Nm identity matrix and Wi,l,k is the multi-
channel Wiener filter which is defined as follows:

Wi,l,k = Ri,l,k

(
Ns−1∑
í=0

Rí,l,k

)−1

, (7)

Therefore, the posterior PDF can be calculated by estimating the
prior PDF parameters, i.e., vi,l,k and Ri,k.

2.3. Iterative parameter optimization

In the conventional method [4, 24], vi,l,k and Ri,k are estimated
in an iterative way. vi,l,k and Ri,k are iteratively updated which
assures that the cost function of each frequency bin decreases mono-
tonically. To solve the well-known inter-frequency permutation am-
biguity problem [5], it is needed to utilize a frequency characteris-
tics model of speech sources such as non-negative matrix factoriza-
tion [24]. However, the conventional models are too simple to ex-
press precise frequency characteristics of speech sources. Recently,
neural-network based frequency characteristics models have been
proposed [10, 19, 20, 21]. In these neural-network methods, esti-
mation of the time-varying speech source variance vi,l,k is replaced
with a neural-network based method. However, estimation of multi-
channel covariance matrices is still needed by using an iterative way
such as the EM algorithm.

3. PROPOSED METHOD
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Fig. 1. Block diagram of proposed method

537



3.1. Overview of the proposed method

Overview of the block diagram of the proposed method is shown in
Fig. 1. The proposed architecture estimates both the covariance ma-
trix Ri,k and the time-varying activity of the speech sources vi,l,k
via a neural network. The covariance matrix is updated with a time-
frequency mask estimated by the neural network. Inspired by effec-
tiveness of phase difference between microphones as an input feature
in the multi-channel deep clustering [18], the proposed method also
utilizes the phase difference between microphones as an input fea-
ture. In the same way as the original LGM [4], the proposed method
estimates the posterior PDF of the clean speech source p(ci,l,k|xl,k)
via a time-varying multi-channel Wiener filter with the estimated
time-frequency mask and the estimated time-varying activity. There-
fore, the posterior PDF is estimated via a real-valued neural network
and a complex-valued signal proessing. In the training stage, pa-
rameters of the neural network are trained so as to minimize a loss
function which is defined as the multi-channel Itakura-Saito distance
(MISD). Instead of evaluating only the time-varying variance vi,l,k,
the proposed method evaluates both vi,l,k and Ri,k. Therefore, both
vi,l,k and Ri,k are jointly optimized in the proposed neural network
structure. It is not needed to utilize an iterative optimization method
such as the EM algorithm for the covariance matrix optimization.
The MISD is known to be equivalent with the log-likelihood function
of the time-varying Gaussian distribution, log p(ci,l,k|xl,k). There-
fore, in the proposed method, there is consistency between the loss
function for the neural network optimization and the PDFs of the
speech sources.

3.2. Proposed multi-channel loss function

Let M be the parameter of the neural network. The loss function of
the proposed method for optimization of the model parameter M is
defined as the following MISD [24]:

L(M) =
∑
i,l,k

(ci,l,k −µi,l,k)
HV −1

i,l,k(ci,l,k −µi,l,k)+ log |Vi,l,k|.

(8)
This loss function is known to be equivalent with the log-

likelihood function of the time-varying Gaussian distribution [24].
Therefore, the loss function can be calculated by estimating the
posterior PDF of a clean speech source.

In the training phase, the error is back-propagated through not
only µi,l,k but also Vi,l,k. In the first term, Vi,l,k acts as a time-
frequency weight which normalizes the error in each time-frequency
bin. The second term acts as a regularization term for a time-
frequency weight. When there is reverberation, the steering vector
of each source is not stationary. Therefore, there is difference be-
tween ci,l,k and µi,l,k. In this case, Vi,l,k will be learned to reflect
the amount of variance of the difference, and Ri,k can be trained so
as to reflect the reverberation effect.

To remove permutation ambiguity, the proposed method calcu-
lates the loss function with a permutation matrix which minimizes
the loss function [17]. The best permutation matrix is estimated in
each parameter update step.

3.3. Parameter estimation of probability density function

The proposed method calculates the posterior PDF of the ith clean
speech source, pM(ci,l,k|xl,k), based on the LGM. Both vi,l,k and
Ri,k are estimated with no iterative way. The covariance matrix
Ri,k is estimated like mask-based beamforming techniques [13] as

follows:
Ri,k =

∑
l

Mi,l,kxl,kx
H
l,k. (9)

Both the time-frequency mask Mi,l,k and the time-varying activity
vi,l,k are real-valued variables, and these variables are estimated via
a real-valued deep neural network. Under the assumption that loca-
tion of each speech source is stationary within each utterance, spa-
tial information is effective for the time-frequency masks estimation
[18]. The proposed method utilizes the phase difference between mi-
crophones, θl,k, as one of input features of the deep neural network
in addition to the amplitude spectral feature, log |xl,k|.

4. EVALUATION

4.1. Setup

Speech source separation performance of the proposed method was
evaluated. The dataset was made by convolving measured impulse
response in Multi-channel Impulse Response Database (MIRD) [25]
with the clean speech sources in TIMIT speech corpus [26].

In the training phase, TIMIT train corpus was utilized. In the
evaluation phase, TIMIT test corpus was utilized. Related to impulse
responses, the reverberation time RT60 was set to 0.16 [sec]. The
number of the microphone was set to 2. The number of the speech
sources was set to 2 in each sample. Two microphone indeces were
randomly selected for each sample both in the training phase and in
the evaluation phase. In the training phase, a 3-3-3-8-3-3-3 spacing
(cm) microphone array was utilized. In the evaluation phase, a 4-4-
4-8-4-4-4 spacing (cm) microphone array was utilized. Therefore, a
different microphone array was utilized in the evaluation phase from
the training phase. Sampling rate was set to 8000 Hz. Frame size
was 256 pt. Frame shift was 64 pt. The number of frequency bins
was 129. The distance between speech sources and microphones
was set to 1 m. Azimuth of each talker is randomly selected for each
utterance. The number of total training utterances was 2000. Mini-
batch size was set to 128. Each utterance was splitted in every 100-
frames segment. Therefore, length of each data was 100 (frame).

4.2. Neural network architecture

The number of BLSTM layers was set to 4. The number of the units
in each BLSTM layer was set to 600. Dropout was utilized in both
BLSTM and dense layers in the training phase. For dense layers,
batch normalization was utilized. Neural network parameters were
updated by 2400 and 4800 times. Adam otpimizer (learning rate was
0.001) with gradient clipping was utilized. The proposed architec-
ture contains complex-valued gradient calculation. Tensorflow [27]
was utilized for complex-valued gradient calculation.

4.3. Evaluation measure

Evaluation measures were set to SIR, SDR, Mel Frequency Cep-
strum Coefficients (MFCC) distance improvement , and segmental
Signal-to-Noise Ratio (seg. SNR). SIR and SDR were calculated by
using BSS EVAL [28]. MFCC distance improvement, ∆MFCC is
defined as MFCCinput − MFCCoutput. MFCCinput is the MFCC
distance between the clean speech source and the microphone input
signal and MFCCoutput is the MFCC distance between the clean
speech source and the estimated speech source. The dimension of
MFCC was set to 13. The seg. SNR is defined as follows:

seg. SNR =
1

L

L∑
τ=0

−10 log10

∑P−1
p=0 ∥sPτ+p∥2∑P−1

p=0 ∥sPτ+p − ŝPτ+p∥2
, (10)
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Table 1. Evaluation results of two-channel speech source separation
Niter = 2400 Niter = 4800

Approaches SIR (dB) SDR (dB) ∆MFCC seg. SNR (dB) SIR (dB) SDR (dB) ∆MFCC seg. SNR (dB)
l2 loss 10.54 8.54 3.50 5.47 11.99 9.46 3.94 6.57

Single-channel IS 1.03 0.16 0.52 0.80 1.39 0.05 0.34 1.06
MMSE (Full) 9.76 7.94 3.24 5.14 10.98 8.88 3.66 5.92
MMSE (Diag) 9.38 7.67 3.13 4.91 10.71 8.47 3.46 5.73

LGM Prior 10.34 8.59 4.39 6.06 11.34 9.13 4.69 6.84
LGM Posterior (Diag) 11.27 9.29 4.19 6.78 10.80 9.10 4.37 6.44

Proposed method 11.57 9.65 4.36 6.96 12.16 10.17 4.66 7.40

where st is the clean speech source in time domain, ŝt is the esti-
mated one, L is the length of time-segments, and P is the length
of each segment. P was set to 512. Each evaluation results were
calculated as average of 1000 utterances.

4.4. Comparative loss functions

The proposed method with the MISD based cost function (LMIS =
L(M)) which is defined in Eq. 8 was compared with the following
six methods based on a different cost function:

• l2 loss function:

Ll2 =
∑
i,l,k

∥ci,l,k − µi,l,k∥2. (11)

• Single-channel Itakura-Saito (IS) distance:

LSIS =
∑
i,l,k

pi,l,k
yi,l,k

− log
pi,l,k
yi,l,k

− 1, (12)

where pi,l,k is the actual power spectral of the ith speech
source and yi,l,k is the estimated one, ∥µi,l,k∥. This cost
function is commonly utilized for time-frequency activity es-
timation in conventional neural-network based blind source
separation methods. To improve estimation accuracy of the
spatial covariance matrices, the conventional methods utilizes
iterative ways in pararel [19, 10].

• MMSE (Full):

LMMSE =
∑
i,l,k

E[∥ci,l,k − ĉi,l,k∥|2]pM(ĉi,l,k|xl,k),

=
∑
i,l,k

∥ci,l,k − µi,l,k∥2 + tr(Vi,l,k). (13)

In this equation, the second term, tr(Vi,l,k), is also regarded
as one of regularizers. However, on contrary to LMIS , the
regularizer does not affect the l2 loss term directly in the
MMSE based cost function case.

• MMSE (Diag): The covariance matrix of the posterior PDF
of a speech source is approximated as a diagonal matrix as
Vi,l,k ≈ diag(Vi,l,k) in the MMSE loss function.

• LGM Prior: Instead of estimating pM(ci,l,k|xl,k), pM(ci,l,k)
is utilized in the proposed loss function.

• LGM Posterior (Diag): The covariance matrix of the posterior
PDF of a speech source is approximated as a diagonal matrix
as Vi,l,k ≈ diag(Vi,l,k) in the proposed loss function.

4.5. Experimental results

Experimental results are shown in Table 1 for the number of the it-
erations Niter = 2400, 4800. It is shown that the proposed method
achieved the best performance except for ∆MFCC. From compari-
sion between the proposed method and l2 loss, it can be said that the
estimated covariance matrix of the posterior PDF of a speech source
works well as a regularization term. Additionally, when the number
of Niter increases, SIR was improved in l2 loss. However, speech
distortion was improved less than the proposed method.

It is also shown that evaluation of spatial information in the loss
function is effective by comparing the proposed method with LGM
Posterior (Diag). Single-channel IS does not separate speech sources
sufficiently, because in this method, only the amplitude spectral of
speech sources are evaluated, and spatial information is not evalu-
ated. Therefore, when there is no iterative way, it is highly diffi-
cult to separate speech sources with the single-channel IS based loss
function. In MMSE cases, the loss function is inconsistent with the
probabilistic model of each speech source. From comparison of the
proposed method with MMSE cases, it can be said that a loss func-
tion which is consistent with a probabilistic model of a speech source
increases speech source separation performance.

5. CONCLUSION

In this paper, a deep neural network based multi-channel speech
source separation technique was proposed. The loss function of the
proposed method is based on minimization of Multi-channel Itakura-
Saito Distance (MISD). The proposed loss function is consisitent
with the probability density function of each speech source that is
assumed in multi-channel speech source separation. Not only the
time-varying variance of a speech source but also the spatial covari-
ance matrix of a speech source can be jointly estimated in the pro-
posed framework. Therefore, additional iteration is not required in
the proposed method so as to estimate the spatial covariance ma-
trix. Experimental results showed that the proposed method with the
MISD loss function can separate two speech sources more clearly
than the other methods.
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