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ABSTRACT

Humans can imagine a scene from a sound. We want machines to
do so by using conditional generative adversarial networks (GANs).
By applying the techniques including spectral norm, projection dis-
criminator and auxiliary classifier, compared with naive conditional
GAN, the model can generate images with better quality in terms
of both subjective and objective evaluations. Almost three-fourth of
people agree that our model have the ability to generate images re-
lated to sounds. By inputting different volumes of the same sound,
our model output different scales of changes based on the volumes,
showing that our model truly knows the relationship between sounds
and images to some extent.

Index Terms— conditional GANs, audio-visual, cross-modal
generation

1. INTRODUCTION

People now are trying to make machines work like humans. Re-
searchers are attempting to teach machines to comprehend natural
languages, to understand the content in images, etc. After under-
standing the content, we also want machines to describe what they
see [1][2]. In addition, we also want machines to have the ability
to imagine. In the task of text-to-image [3], machine can turn text
descriptions into images. In this paper, we want machines to imag-
ine the scenes by listening to sounds. We hope that when hearing
sounds, machine can draw the object that is making sounds and the
scene that the sound is made. For instance, after hearing the spar-
rows chirp, machine can draw a picture of sparrows with probably
trees or grass as background.

In recent years, there are lots of generative models using gen-
erative adversarial networks (GANs) [4] to generate images. Be-
sides generating images randomly, there is also a large number of
researches using conditional GANs [5], in which the generators take
some conditions as input and generate corresponding images. In the
previous work, their conditions are the text description of images [3]
or the classes of the images to be generated [6][7]. Based on condi-
tional GANs, if we can provide enough sounds and their correspond-
ing images, machines are supposed to learn how to generate images
that include the objects making sounds. As far as we know, there is
little image generative model that is conditioned on sound.

The technology we use to learn an audio-to-image generator
is based on GAN. In this paper, we fuse several advanced tech-
niques of conditional GANs including spectral normalization [8],
hinge loss [9][10], projection discriminator [6] and auxiliary clas-
sifier [7] into one model. Machine learns the relationships between
audio and visual information from watching videos. We create a
dataset from SoundNet Dataset [11] by using pretrained image clas-
sification and sound classification models to apply data cleaning. Af-

ter training, the audio-to-image generator can produce recognizable
images, and the advanced techniques of conditional GAN achieve
better Inception score [12][13] than the naive conditional GAN. In
addition, we show that our model learns the relationship between
sounds and images by inputting the same sound with different vol-
ume levels.

2. RELATED WORKS

Seeing and hearing help human to sense the world. Some cross-
modal researches try to learn the relation between auditory contents
and visual contents. With the learned relation, it can be applied on
tasks such as pattern discovering [14] and speech retrieval [15]. Be-
sides, sounds can not only interact with visual contents, sounds itself
contain lots of information. SoundNet [11] is a deep convolutional
neural network for natural sound recognition. By transferring the
knowledge from other pretrained scene recognition model and object
recognition model, SoundNet learns to identify scenes and objects
by only auditory contents. Information in sounds can also improve
performance of other tasks, such as video captioning [2][16][17]. By
adding sound features into video captioning models, the models gen-
erate more accurate descriptions and obtain higher scores in various
evaluation metrics.

Recently there are lots of researches related to generative ad-
versarial networks (GANs) [4]. In text-to-image [3], they turn a de-
scription into a vector representation first, and use this representation
as input to generator. They defined different losses to three different
kinds of input pairs respectively. After minimizing those losses, gen-
erator is capable of generating different kinds of images according to
input text description. Besides generating images from given condi-
tions, there are researches generating sounds from given videos [18].

There are some similar works that generate images condition on
sounds, such as [19][20]. In these works, they use different dataset
called Sub-URMP [21] which is composed of sounds of musical per-
formances with monotonous background and similar composition in
images. By using different training scenario, they achieve the goal of
generating images which depict a single person with an instrument
correspond to input sound. However, in our work, we want to know
whether machines can generate more complicated images condition
on more complicated sounds. Some different experimental results
will be shown in section 5.

3. DATASET

To make machines learn the relation between sounds and images,
we need paired sounds and images. In previous work [11], videos
crawled from the webs are used to train a sound classification model,
SoundNet, to classify where or what is in the sounds. Here we use
the screenshots of videos and sound segment files in the dataset to
train our models. Most of sound segment files in our dataset are
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Fig. 1. Model architecture with projection discriminator and auxil-
iary classifier.

around 30 seconds long, and we resize all the screenshots to size of
64*64.

However, we found that the corpus for training SoundNet can-
not be directly used to train audio-to-image models because there
are some discrepancies between images and sounds. The screen-
shots and the sounds of videos can be unrelated. For example, from
the sound of video, we can hear sound of boat engine and rippling
sound of water, but because the photographer was sit in the boat, we
can only see the inside of the boat in the video. The discrepancies
above may lead machines to learn chaotic relation between sounds
and images. In addition, the sounds of different objects sometimes
cannot be discriminated even by humans. For example, the sounds
of boat engine are very similar to the sounds of propeller aircraft
engine. Because the model cannot discriminate their sounds, when
hearing the sounds of aircraft engine, the generator learned without
data cleaning may generate the photo showing blue ocean with some
splashes rather than the photo of plane flying.

To relieve the difficulties of learning sound-image matching, we
use an image classifier and a sound classifier to clean up the dataset
automatically. We classified sounds in those videos into categories
by the pretrained sound classification model, SoundNet [11]. We
also use Inception model [22], an image classification model, to clas-
sify the images. If the classification results for the image and sound
are not the same, the sound-image pair would be discarded. After
this procedure, 78% of the data is discarded. Because the above data
cleaning procedure is automatic, it cannot be perfect, but it remark-
ably improves the quality of the generation results.

Because some objects are very rare in the training data, to make
the training of audio-to-image plausible, only the sounds classified
into dog, drum, guitar, piano, plane, speedboat, dam, soccer, base-
ball by SoundNet are used in the following experiments. The above
nine classes are chosen because they are the classes with the most
examples in the training data. The corresponding number of train-
ing examples for each class is 264, 259, 207, 1899, 2803, 900, 584,
2077, 1708. The total number of sound-image pairs for training is
10701, and the total number of sound segments for testing is 248.

4. APPROACH

Due to the success of text-to-image synthesis [3], which utilized
text embeddings as condition for generators to generate correlated
images, our work is based on similar model architecture. Re-
cently, there are some researches trying to improve the generation
by limiting discriminator to be a function in 1-Lipschitz continuity
[6][8][23] or utilizing another auxiliary classifier in discrimina-
tor [7]. We fuse these approaches into one model. Therefore,
although the algorithm for GAN training is similar to text-to-image,

the discriminator architecture and loss function used here are very
different. The model architecture is illustrated in Figure 1.

4.1. Generator
The generator is shown in the left hand side of Figure 1. The input
sound segment is first represented by a sequence of features. The
features can be spectrograms, fbanks, and mel-frequency cepstral
coefficients (MFCCs), and the hidden layer outputs of the pretrained
SoundNet model. Using SoundNet for feature extraction is illus-
trated in Figure 1. Then all the features in the sequence are aver-
aged into a single vector s. The vector s is taken as the condition of
the generator. Then, we concatenate a noise vector z sampled from
normal distribution with our sound condition as the input to genera-
tor. Generator is the cascade of several transposed convolution layers
with hyperbolic tangent function as the activation function in the last
layer. The output of the generator is an image generated based on the
input condition.

4.2. Discriminator
The discriminator is in the right hand side of Figure 1. The discrim-
inator takes a pair of sound segment and image as input, and outputs
a score. The architecture of discriminator is the cascade of several
convolution layers with spectral normalization [8] in each layer. The
convolution layers takes an image as input and outputs a scalar rep-
resenting the quality of the image. The projection layer which is
simply a linear transformation projects the sound vector into a la-
tent representation [6]. Then by computing inner-product between
projected vector and the output of one of the convolution layer, we
obtain a similarity score representing the degree of match between
the audio and image. The final output of the discriminator is the ad-
dition of the similarity score and the scalar that solely comes from
convolution layers. The final score represents not only the realness
of images but also relevance between sounds and images. The dis-
criminator learns to assign large score to the sound-image pairs in
the training data, and low score to the sound and its generated im-
age. While the generator tries to fool discriminator, it learns how to
generate images which are relevant to input condition and looks like
real photos.

In Figure 1, there is an auxiliary classifier. The classifier shares
weights with the convolution layers in discriminator, and they are
jointly learned. Because in the training data, the class of the sound
segment and image pair can be obtained by SoundNet and Incep-
tion model, the classifier can learn to predict the class of an input
image from the training data. The generator will learn to gener-
ate images that can be correctly classified by the auxiliary classifier.
That is, given the sound segment that is classified as “speedboat” by
SoundNet, the generator should generate the image that is also been
classified as “speedboat” by the auxiliary classifier.

4.3. Training Algorithm

The loss functions of generator G and discriminator D are as fol-
lows. Loss function of generator LG:

LG = −Es∼data,c=SN(s),z∼N (0,1)[D(G(s, z), s)

+ logPC(c|G(s, z))].
(1)

s is the vector representation of a sound segment sampled from train-
ing data. SN(.) represents the SoundNet, and c is the output class of
the input sound s. G(s, z) is the generated image given sound s and
a random noise z sampled from normal distribution. D(G(s, z), s)
is the score assigned by the discriminator D given a pair of sound
s and image G(s). The generator learns to maximize the score that
can be obtained by the generated image G(s). PC(.) represents the
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auxiliary classifier. The generator also learns to maximize the log
likelihood of the auxiliary classifier, logPC(c|G(s, z)). Loss func-
tion of discriminator LD:

LD =E(s,x)∼data[max(0, 1−D(x, s))]

+ Es∼data,z∼N (0,1)[max(0, 1 +D(G(s, z), s))]

− Ex∼data,c=IN(x)[logPC(c|x)]
(2)

In the first term, a pair of sound s and image x is sampled from the
dataset. The discriminator D learns to assign larger score D(x, s)
to the pair to minimize LD . Here we use hinge loss which is shown
to improve the performance in the following experiments [9][10].
In the second term, the sound s is sampled from training data, while
G(s, z) is the image generated by the generator. The discriminator
leans to assign smaller score to the generated images. In the third
term, we sample a sound segment s from the dataset, and obtain its
class c by the Inception model IN(.). The auxiliary classifier PC

learns to maximize the log likelihood logPC(c|x) of class c given
image x.

The generator and the discriminator are trained iteratively. That
is, the generator is fixed, and the discriminator is updated several
times to minimize LD . Then we fix the discriminator, and update
the parameters of the generator also several times to minimize LG.

5. EXPERIMENTS
Our training procedure follows standard GAN training algorithm.
Generator is composed of four deconvolution layers with ascending
number of kernels. Discriminator is composed of four convolution
layers and with linear function as activation function of final layer.
To keep this adversarial training procedure in balance, more training
steps are needed for generator to catch up discriminator 1. The input
dimension is 266 which consist of 256-dimension SoundNet feature
and 10-dimension z sampled from normal distribution. The whole
optimization process is based on Adam optimizer with learning rate
0.0002, and we train 300 epochs for all experiments.

5.1. Sound Feature Representation

First of all, we want to know which kind of sound feature is the most
suitable feature for this task. We use the Inception score to evaluate
the generated images. Inception score [12] is computed by extract-
ing class distributions from generated images via pretrained image
classification model Inception v3. By feeding a generated image into
Inception v3, we obtain a class distribution. If the class distribution
is concentrated on one class, that means the image is clear, so Incep-
tion v3 is confident about what it sees. On the other hand, given a
set of generated images, we want the average of the class distribu-
tions is more like uniform distribution because this means that the
generated images are diverse. Inception score integrates the above
two properties into one score by using KL divergence. Here the im-
ages generated for testing are splitted into ten folds. We calculated
the Inception score for each fold, and show the mean and standard
deviation of the ten scores.

The Inception scores of different sound features using the same
model and training algorithm are shown in Table 1. For Sound-
Net feature, we used the output of the 5-th hidden layer. The results
show that SoundNet feature performs the best, so we utilize Sound-
Net feature in the rest experiments. Among all the features, MFCCs
performs the worst. This is probably because MFCC is designed for
speech recognition, and it discards some information not related to

1We train generator five times per each update of discriminator.

Feature Inception Score
Spectrogram 2.16 ± 0.29

Fbank 2.12 ± 0.32
MFCCs 1.21 ± 0.09

SoundNet 2.70 ± 0.73

Table 1. Inception scores of different kinds of features.

speech. Spectrogram and fbank outperforms MFCC because they
are more primitive than MFCC, and preserves more information in
the input audio.

5.2. Qualitative Results

Sampled images from generator by inputting the sounds not in train-
ing data are shown in Fig 2. The audio files and their generated
images can be found in https://wjohn1483.github.io/
audio_to_scene/index.html. Although generated images
are not as clear as normal photos, we can still see the shapes of some
objects related to the input audio in some images.

Sounds belonging to some classes can generate relatively high
quality images. For speedboat or plane, there are eye-catching ob-
jects in the generated images. The generator truly generates the im-
ages that are interpretable to some extent. Some classes of images
get worse quality of images than others. This may be because the
imbalance and variance in different classes of training data. The
number of training examples mentioned in section 3 may explains
why some classes performed better than the others. We also found
that for all the sounds classified into drums, they still have very high
diversity. There are many kinds of drum and are played in variant
places. It becomes an obstacle for model to generate image from the
sound of such class. On the contrary, in some classes like plane and
speedboat with relatively common background such as blue sky and
blue ocean, it is easier for model to generate high quality image in
these classes. In our dataset, we can assume that classes with natural
landscape in background such as plane, speedboat, baseball, soccer,
and dam are purer than classes with variant background such as dog,
drum, guitar, and piano.

Dog Drum Guitar

Piano Plane Speedboat

Dam Soccer Baseball

Fig. 2. Samples from our model. Each image is generated from a
sound segment. The labels are the classes predicted by SoundNet.

5.3. Sound Volume
To further investigate whether our model truly learns the relation be-
tween sound an vision, we tune the volume of sounds to observe the
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influences on generated images. For example, if the sound is louder,
the object may be closer or bigger in the generated image. After
tuning the volume of testing sounds, we extract SoundNet features
for those sound files. We input those tuned sound features into our
generator which was pretrained on standard volume scale. The im-
ages are shown in Table 2. The images in Table 2 are sampled from
class speedboat and dam. The images in the same row are generated
from the same audio with different volumes. The audio files can also
be found in https://wjohn1483.github.io/audio_to_
scene/index.html. Images in the same row are generated from
the same audio with different volumes. The numbers on top indicates
the scale of volume that we modified our sound files and images in
the same row are generated from the same audio with different vol-
umes. In those images, we can see different scale of splashes. As the
volume goes up, the scale of splashes become larger. We can see that
our model truly learned the relation between characteristic of sound
and image. In this case, the volume of sounds is reflect on splashes.

0.5 times Original 2 times 3 times

Table 2. Generated images by inputting different volumes of sounds.
The numbers in the table is the relative loudness to the original
sound.

5.4. Ablation Study
In this subsection, we want to know the influence of each part in our
model. Table 3 shows the Inception score of different types of model.
Row (a) shows the upper bound of this task, which is obtained by
inputting all the real images we have in training and testing data to
calculate Inception score. The Inception score obtained in this way
is 4.44, which is the highest score we can get. We can use this upper
bound score as a criterion to measure the quality between generated
images and real images. In both rows (b) and (c), we used the same
network architecture as in [3], but we substitute sound embedding for
sentence embedding. In row (b), we apply improved W-GAN [23]
on original text to image architecture, which use gradient penalty to
make sure discriminator is in 1-Lipschitz continuity. The table shows
that improved W-GAN cannot get good Inception score in this task.
On the other hand, conditional GAN can perform better. By adding
different tricks mentioned above, we can get improvements step by
step. It shows that tricks do help our model to generate better images.
Finally, with all the technologies, we can get 2.83 in Inception score,
which performs relatively good compare to our upper bound.

5.5. Human Evaluation
5.5.1. Evaluation on ablation study

In the previous section, we use Inception score to evaluate the re-
alness of generated images. In this section, we want to prove that
the improvement of different models is not only shown on Inception
score but also on human feeling. We ask ten people to help us eval-
uate our models. Our experimental setup is as follows, we sample

Model Inception Score
(a) Upper bound 4.44 ± 1.91
(b) Improved WGAN 1.42 ± 0.13
(c) Conditional GAN 2.21 ± 0.38
(d) + Spectral Norm 2.45 ± 0.48
(e) + Hinge Loss 2.49 ± 0.51
(f) + Projection Discriminator 2.61 ± 0.41
(g) + Auxiliary Classifier 2.83 ± 0.53

Table 3. Inception scores of different models

some pairs of image and corresponding sounds in testing data. Then,
let people listen to those testing sounds and rate from 1 to 5. If the
generated image is unreal or uncorrelated to testing sound, people
should rate this pair with lower score. On the contrary, if the gener-
ated image seems real enough and have high correlation with sound,
this pair should get higher score. The results are shown in Table
4. We can see that most people think the model with all tricks per-
formed the best. Although those models get close scores in Inception
score, they get scores which have at least 0.4 gap between different
models.

Model Average Score
Conditional GAN with spectral norm 1.90

+ Hinge Loss 2.74
+ Projection Discriminator 3.16

+ Auxiliary Classifier 3.70

Table 4. Human scores on different models

5.5.2. Correlation between sounds and images
To measure the correlation between sounds and images, we ask peo-
ple to choose the most correlated image from two different images
after hearing a sound from testing data. These two images are condi-
tioned on different class of sounds so that if our model can generate
images related to given class, people will choose the corresponding
image which is generated by inputting sound that they just listen to,
rather than image generated by inputting sampled sound from other
classes. The results are listed in Table 5. Options in table means the

Options Positive Negative Neither
Percentage (%) 73 11 16

Table 5. Human scores on correlation between sounds and images

choices that people choose. Positive means people choose the image
generated by the sound they hear, negative means people choose the
image generated by sound sampled from other classes, and neither
means people think both of the images cannot represent the sound
they listen to. In this table, We can see that most of the people think
the images that our model generated are correlated to input sounds.
It shows that our model has the ability to generate images related to
given sounds.

6. CONCLUSION
In this paper, we introduce a novel task in which images are gener-
ated conditioned on sounds. Base on SoundNet dataset, we utilize
image and sound classification results to build a relatively cleaner
image-sound paired dataset. By applying different methods to our
generative model, the model can generate images with better quality
in terms of both subjective and objective evaluations. In addition,
almost three-fourth of people agree that our model have the ability
to generate images related to sounds.
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“Wasserstein gan,” arXiv preprint arXiv:1701.07875, 2017.

500


		2019-03-18T10:58:35-0500
	Preflight Ticket Signature




