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ABSTRACT

Processing of speech and audio signals with time-frequency
representations require windowing methods which allow per-
fect reconstruction of the original signal and where process-
ing artifacts have a predictable behavior. The most common
approach for this purpose is overlap-add windowing, where
signal segments are windowed before and after processing.
Commonly used windows include the half-sine and a Kaiser-
Bessel derived window. The latter is an approximation of
the discrete prolate spherical sequence, and thus a maximum
energy concentration window, adapted for overlap-add. We
demonstrate that performance can be improved by including
the overlap-add structure as a constraint in optimization of the
maximum energy concentration criteria. The same approach
can be used to find further special cases such as optimal low-
overlap windows. Our experiments demonstrate that the pro-
posed windows provide notable improvements in terms of re-
duction in side-lobe magnitude.

Index Terms— time-frequency processing, windowing,
discrete prolate spherical sequences

1. INTRODUCTION

Speech and audio signals are slowly time-varying in charac-
ter, such that it is beneficial to analyze and process them in
short segments. When the segment length is chosen appro-
priately, we can treat the signal as a stationary process within
the segment such that statistical modeling becomes efficient.
Many applications then use time-frequency transforms on the
segments such as the short-time Fourier transform or the mod-
ified discrete cosine transform, for the benefit of statistical and
perceptual efficiency [1–4].

Segmenting a signal is a windowing problem, where the
segment is extracted by multiplying with a windowing func-
tion, which is non-zero in a limited range. In analysis appli-
cations, signal processing has a long history in the design of
such windowing functions and its theory is presented in every
basic book of signal processing, e.g. [5]. The principal ob-
jective of windowing in analysis applications is to minimize
the detrimental effect of windowing on the signal statistics.
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Fig. 1. Illustration of input and output windowing with
overlap-add synthesis in a speech processing application.

In processing applications, however, we also need to consider
the effect of windowing on the reconstruction process.

A widely used approach in time-frequency processing of
signals is known as overlap-add, where the input signal is
windowed into overlapping segments, and after processing,
the segments are windowed a second time before adding them
together [4, 6, 7] (see Fig. 1). By a careful choice of window-
ing functions, we can ensure that, in the absence of modi-
fications to the windowed signal, the original signal can be
reconstructed from the windowed segments. This is known as
the perfect reconstruction property.

Windowing is often discussed in combination with time-
frequency transforms, whence the combination is known as
a filterbank [8]. A particular type of filterbanks are those
which, in addition to perfect reconstruction, also provide crit-
ical sampling. The most commonly used critically sampled
filterbank in audio processing is the modified discrete cosine
transform [9–11], which can also be applied in a bit-exact
manner [12]. Typically, such applications use the half-sine
or a Kaiser-Bessel derived (KBD) window, which are some
of the few windows applicable in overlap-add. A radically
different approach is commonly used in speech coding with
code-excited linear prediction (CELP), where temporal corre-
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lation is explicitly modeled by a linear predictor, such that the
predictor residual can be windowed without overlaps [3, 13].

The performance of windows which are suitable for
overlap-add have however not received the same rigorous
attention as the classical windowing methods. This paper
presents methods for representing the symmetries required by
overlap-add as constraints such that the window performance
can be optimized. Specifically, we will use the maximum
energy concentration criteria [14], familiar from Slepian or
discrete prolate spherical sequence (DPSS) -windows, to
obtain optimal windows for overlap-add.

2. OVERLAP-ADD WINDOWING

The objectives, when applying windowing in processing ap-
plications, are two-fold: 1. In the absence of any modifica-
tions, we require that the original signal can be reconstructed
perfectly. 2. When the windowed signal is modified, then the
energy expectation of the modification (or error), in the output
signal, should be uniform over time.

Let xk be our input signal which we want to segment into
overlapping windows. Window h of the signal is then

yk,h = wk−Lh/2xk, (1)

where wk is the windowing function of length L for which{
wk > 0, when k ∈ [1, L]

wk = 0, when k ≤ 0 or k > L.
(2)

We can then apply some processing on the windows yk,h such
that the modified signal is ŷk,h.

To reconstruct the signal, we apply windowing again by
multiplying with the windowing function and add the win-
dows together, such that the modified output signal is

x̂k :=
∑
h

wk−Lh/2ŷk,h. (3)

It is important to observe that the window is applied twice,
once on the input signal and a second time after processing
on the modified output window. Only after applying the win-
dow twice can we add the segments together to obtain the
resynthesised signal.

It is well-known and we can readily see that both the re-
quirement of perfect reconstruction and uniform error energy
is ensured when the windowing function satisfies the Princen-
Bradley criteria [2, 3]

w2
k+L/2 + w2

k = 1, for k ∈ [1, L/2]. (4)

Figure 2 illustrates a typical windowing function which sat-
isfies the Princen-Bradley criteria and Figure 1 illustrates the
effect of overlap-add windowing on a speech signal.
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Fig. 2. (a) Typical input windowing functions of subsequent
frames and (b) the corresponding squared windowing func-
tions. The thin line in (b) demonstrates the region where the
windows add up to unity as required by Eq. 4.

3. CONSTRAINED MAXIMIZATION OF
ENERGY CONCENTRATION

Windowing in the time-domain corresponds to convolution in
the frequency-domain. To minimize frequency-domain dis-
tortion, we therefore require that energy of the windowing
function in the frequency-domain is maximally concentrated.
The concentration of energy can be evaluated by the ratio of
energy in the pass-band versus total energy

τ =

∫ δ
−δ |W (f)|2df∫∞
−∞ |W (f)|2df

, (5)

whereW (f) is the spectrum of the windowing function and δ
is the bandwidth of the pass-band. For discrete, finite length
windowing functions w = [w1, . . . , wL]

T it can be shown
that the above ratio is equivalent with

τ =
wTTw

‖w‖2
, (6)

where T ∈ RL×L is a symmetric Toeplitz matrix with ele-
ments

Tk−h =
L sin

(
π
Lα(k − h)

)
(k − h)

, (7)

where α ∈ (0, 1) defines the width of the main lobe. Clearly
the maximum of τ is then the eigenvector of T corresponding
to the largest eigenvalue and we can equivalently define

maxwTTw such that ‖w‖2 = 1. (8)

The eigenvectors of T are known as discrete prolate spherical
sequences (DPSS) and the corresponding windowing func-
tions are known correspondingly as DPSS or Slepian win-
dows [14–16].

492



h− 1 h
Window index

1
0

M
ag

ni
tu

de
w
k

Sample position k

Fig. 3. To obtain a low overlap between windows, we can
constrain a number of samples in the middle of the window
to have unit magnitude. Thin dotted vertical lines indicate the
borders between the flat tops and overlap areas.

The main objective of this paper is to design windowing
functions which fulfill those symmetries required by overlap-
add processing, while simultaneously optimizing the above
spectral characteristics. First, the Princen-Bradley conditions
of Eq. 4 can then be written as

wTPkw = 1, (9)

where Pk is diagonal with diagonal entries [Pk]h,h = δk−h+
δk+L/2−h. In other words, Pk has two non-zero entries on
the diagonal which pick out the kth and (k+L/2)th samples
of the windowing vector w. Consequently, the matrices Pk
are positive semi-definite. Observe that the constraints Eq. 9
is similar to the constraint in Eq. 8 but more strict. We can
therefore define a new optimization problem, using the con-
straints of Eq. 9 and the objective function of Eq. 8 as

maxwTTw such that wTPkw = 1 for k ∈ [1, L/2]. (10)

This is a quadratically constrained quadratic programming
(QCQP) problem, which is known to be convex if the ma-
trices T and Pk are positive definite. We can therefore use
numerical optimization based interior-point methods to find
the optimal solution.

4. LOW-OVERLAP WINDOWS

In some applications it is desirable to limit the overlap length
between windows [17]. The conventional approach in de-
signing windows of length L with overlap T , is to choose
a windowing function of length 2T and extend it by a vector
of L − 2T ones in the middle, such that the desired length
is achieved (see Fig. 3). This heuristic method can now be
amended using the optimization presented above.

Specifically, we can define new constraints as{
w2
k+L−T + w2

k = 1, for k ∈ [1, T ].
wk = 1, for k ∈ (T, L− T ). (11)

Substituting these quadratic and linear constraints into the op-
timization problem of Eq. 10 yields a low-overlap window
which has maximal energy concentration.
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Fig. 4. Illustration of the shapes of proposed window with
different values of α and a window length of L = 256.

5. EVALUATION

The most commonly used overlap-add windows include the
half-sine and a Kaiser-Bessel derived (KBD) window. The
half-sine window is defined as

wsin,k = sin

(
π
(
k − 1

2

)
L

)
, for k ∈ [1, L]. (12)

The KBD window is based on the Kaiser-Bessel window, de-
fined as

uk = I0

α
√
1−

(
2(k − 1

2 )

L− 1
− 1

)2
 , for k ∈ [1, L],

(13)
where α > 0 specifies the width of the main-lobe. The KBD
window is then defined as

wKBD,k =

√√√√∑k
h=1 uk∑L
h=1 uk

, for k ∈ [1, L]. (14)

In other words, the KBD takes the cumulative sum of the
Kaiser-Bessel window, normalizes it by the sum and then
takes a square root to satisfy Princen-Bradley.

We generated the proposed DPSS based overlap-add win-
dows (OLA-DPSS) by using the interior-point algorithm of
the Optimization toolbox in Matlab2018a. Fig. 4 demon-
strates the obtained window shapes for different values of the
parameter α. As an informal observation, we did not have
any problems with convergence and the running times were
only some seconds. Since windowing functions are usually
determined off-line, we conclude that computational capacity
is not an issue in calculation of OLA-DPSS windows.

Figure 5 illustrates the half-sine, KBD and the proposed
windows and their spectral responses. Note that we have here
manually tuned the pass-band bandwidth α’s in Eqs. 13 and
Eq. 7 such that the main-lobe widths match that of the half-
sine window. This choice allows fair comparison of the side-
lobe magnitudes.

We observe that the KBD window is in shape very similar
to the half-sine, and their spectral responses differ only for
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Fig. 5. Illustration of (a) the half-sine, KBD and proposed OLA-DPSS windows, (b) their spectral responses and (c) responses
focused on the central region. Window length is L = 128 and KBD has α = 4.25 and OLA-DPSS has α = 2.75.
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Fig. 6. Illustration of low-overlap versions of (a) the half-sine, KBD and proposed OLA-DPSS windows, (b) their spectral
responses and (c) responses focused on the central region. Window length is L = 256, overlap length is T = 64, KBD has
α = 4.25 and OLA-DPSS has α = 5.

the second side-lobe and higher. The shape of the proposed
OLA-DPSS window, however has slightly higher tails near
the ends of the window. Moreover, the spectral response of
the OLA-DPSS has an approximately 2 dB benefit for the
first side-lobe. The energy concentration ratios following
Eq. 6, for the half-sine, KBD and OLA-DPSS windows are
16.6559, 16.6582 and 16.6624 dB (parameters as in Fig. 5).
In other words, by using OLA-DPSS, we obtain 0.0065 dB
and 0.0041 dB improvements in energy concentration in com-
parison to the half-sine and KBD windows respectively.

Figure 6 illustrates low-delay versions of the half-sine,
KBD and the proposed windows and their spectral responses.
Here we find differences only from the second side-lobe,
where the OLA-DPSS is about 3 dB better than the half-sine
and 2 dB better than KBD. The corresponding energy con-
centration ratios are 19.6191, 19.6182, 19.6193 dB indicating
that again the OLA-DPSS is the best (by design) but the
difference to the others is marginal.

6. CONCLUSIONS

Design of windowing functions has a long tradition in signal
analysis. In processing of speech and audio signals, we how-
ever require that reconstruction of signals is possible. The

conventional approach is to use a method known as overlap-
add, where subsequent windows are overlapped such that
their sum recovers the original signal. This places constraints
on the window design which has not been adequately taken
into account in previous studies.

Slepian windowing functions based on discrete prolate
spherical sequences (DPSS) are optimal in terms of energy
concentration, whereby we propose to apply the same ob-
jective function but with constraints that satisfy the symme-
tries required by overlap-add. The optimization problem is
a quadratically constrained quadratic programming problem,
whose solution has become feasible with modern optimiza-
tion toolboxes. Since windowing functions are usually deter-
mined off-line, computational complexity is not an issue.

The presented evaluations confirm that the proposed
overlap-add DPSS or OLA-DPSS windows are efficient in
energy concentration as desired and the proposed window
is better than the conventional windows in all comparisons
presented. Since the proposed overlap-add window surpasses
the performance of conventional windows in all aspects, in-
deed it is the optimal window for this application, OLA-DPSS
should be the preferred choice in speech and audio processing
applications.
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