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ABSTRACT

In this paper, we evaluate hand-crafted features as well as features
learned from data using a convolutional neural network (CNN) for
different fundamental frequency classification tasks. We compare
classification based on full (variable-length) contours and classifica-
tion based on fixed-sized subcontours in combination with a fusion
strategy. Our results show that hand-crafted and learned features lead
to comparable results for both classification scenarios. Aggregating
contour-level to file-level classification results generally improves
the results. In comparison to the hand-crafted features, our examina-
tion indicates that the CNN-based features show a higher degree of
redundancy across feature dimensions, where multiple filters (con-
volution kernels) specialize on similar contour shapes.

Index Terms— fundamental frequency contours, feature learn-
ing, convolutional neural networks, activation maximization

1. INTRODUCTION

In the last years, data-driven algorithms for feature learning based
on deep neural networks often outperformed traditional analysis
methods that exploit domain expert knowledge. Compared to hand-
crafted feature design, data-driven approaches often show superior
performance within analysis and classification scenarios. However,
as a main disadvantage, learned feature representations often lack a
clear interpretation and give only little insight into the problem at
hand.

In the field of Music Information Retrieval (MIR), fundamental
frequency (f0) contours, i. e., variable-length time-series representa-
tions of the pitch curve of musical notes, are a rich mid-level repre-
sentation as they provide cues for both music performance analysis
and music content analysis [1]. For example, frequency contours
have been successfully applied for MIR tasks such as playing and
singing style analysis, as well as genre and music instrument classi-
fication. In general, a reliable extraction of f0 contours from poly-
phonic audio mixtures remains challenging to this day. One open
issue is how to best map variable-length f0 contours to fixed-size
feature representations for music classification applications.

As the main contribution of this paper, we systematically eval-
uate different contour feature representations for a wide range of
MIR classification tasks. In particular, we compare hand-crafted fea-
tures (knowledge-driven approach) with features learned from data
(data-driven approach). To capture dependencies over time, vari-
ous sequence modeling techniques such as recurrent neural networks
(RNN) or auto-regressive models exist. In this paper, we will focus
on CNN-based methods for two reasons: first, shift-invariance with
respect to time is a useful property in our context and, second, convo-
lution kernels allow for a better interpretability (in terms of filters).

As a further contribution, we discuss a fusion approach based on
fixed-size segments (subcontours), which lead to better classification

results than approaches based on variable-length contours. Python
code and data to reproduce the classification results are published on
an accompanying website1.

2. RELATED WORK

One prominent application scenario for frequency contour analysis
in MIR is to classify instrument playing techniques as part of auto-
matic transcription algorithms. For example, Barbancho et al. [7],
Abeßer et al. [8], and Kehling et al. [3] showed for isolated vi-
olin, bass guitar, and electric guitar recordings, respectively, that
typical frequency modulation techniques such as vibrato, bending,
and slides can be classified with high accuracy above 90 % on a
note-level. As for ensemble recordings, the classification problem
becomes much harder. For example, Abeßer et al. reported in [9] ac-
curacy values between 48% (fall-off) to 92 % (vibrato) for common
modulation techniques in trumpet and saxophone jazz solos. The au-
thors proposed a set of contour features that measures modulation,
fluctuation, and the average gradient of f0 contours (see PYMUS fea-
ture set, Section 4.1). In a follow-up publication, these features were
used to investigate how the pitch modulation range and the intona-
tion depend on the musical context (within a solo) and on the artist
[10].

In [11], Salamon et al. used the Melodia melody detection al-
gorithm [12] to extract f0 contours from polyphonic music record-
ings. Based on these f0 contours, the authors described a set of
low-dimensional features including contour duration, pitch range,
as well as vibrato rate, extent, and coverage. These contour fea-
tures outperformed low-level timbre features for genre classifica-
tion. Pantelli and Bittner proposed a set of contour features (see
BITTELI feature set, Section 4.1) for singing style analysis [13].
First, f0 contours were classified according to vocal/non-vocal cat-
egories. Then, a dictionary-learning approach based on spherical k-
means clustering was used to derive fixed-size activation histogram
for vocal contours. Finally, these histograms were used as features
to analyze different singing styles. Using the same feature set, Bit-
tner et al. reported in [1] accuracy values around 0.72 for related
tasks like vocal/non-vocal, bass/non-bass, melody/non-melody, and
singer’s gender (male, female) classification.

3. DATASETS & CLASSIFICATION SCENARIOS

In this paper, we use four datasets, which cover various music
analysis tasks and different levels of timbre complexities. Table
1 provides a general overview over all datasets. We apply a post-
processing (resampling) to have the same time resolution of 5.8

1https://github.com/dfg-isad/icassp_2019_f0_
contours
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Table 1: Dataset overview. Bold prints in column “Classes” indicate corresponding class abbreviations used in Figure 1. Final three columns
indicate number of classes, contours (C), subcontours (SC), and files in each dataset.

Label Task Classes Dataset Complexity Contour Estimator Number of
Classes C (SC) Files

GENRE Music Genre flamenco, instrumental jazz, opera,
pop, vocal jazz,

In-house dataset [2] multitimbral Melodia 5 12531
(487386)

499

GUITAR Playing Style
(guitar)

bending (BE), normal (NO), slide
(SL), vibrato (VI)

IDMT-SMT-GUITAR [3] monotimbral Score + pYin 4 2240
(67728)

191

INST Instrument clarinet, flute, saxophone, singing
voice (female), singing voice
(male), trumpet, violin

IDMT-MONOTIMBRAL
[4]

multitimbral Melody Transcription
+ Peak Tracking

8 10214
(179743)

180

WJD Playing Style
(saxophone,
trumpet etc.)

(pitch) bend, fall, slide, vibrato Weimar Jazz Database
(WJD) [5]

monotimbral
after source
sep.

Score-Informed Sep-
aration + pYin [6]

4 4964
(126808)

360

ms for all contours across all four datasets. As will be detailed in
Section 4.2, we only consider contours from 197.2 ms to 1995.2 ms
duration. The GENRE database was used in [11] and contains 12531
contours from 500 30-second excerpts equally distributed along the
five music genres opera, pop, flamenco, vocal jazz, and instrumen-
tal jazz. The contours were extracted using the Melodia algorithm
[12] covering a frequency range of five octaves between 55 Hz and
1760 Hz. The GUITAR dataset includes 2240 tones extracted from
monotimbral electric guitar recordings in the IDMT-SMT-GUITAR
dataset [3]. The notes are annotated with five the playing style
classes bending, normal (stable pitch), slide, and vibrato. Again,
the pYin pitch tracker was used for note-wise contour extraction.
The INST dataset includes 10214 contours extracted from the
IDMT-MONOTIMBRAL dataset [4]. Here, only the monophonic
instrument classes violin, flute, trumpet, saxophone, clarinet, as well
as female and male singing voice were considered. Contours were
extracted by first running the automatic melody transcription algo-
rithm by Dressler [14] followed a partial tracking based on linear
interpolation as part of the solo/accompaniment source separation
[15]. The WJD dataset includes a subset of 4964 tones taken from
the Weimar Jazz Database (WJD) [5], which are annotated with
one of the four playing style classes drop-off, slide, pitch-bend,
and vibrato. The WJD includes jazz ensemble recordings with
predominant solo instruments such as trumpet, tenor, alto, soprano
saxophone, and trombone. Using the same procedure as described
in [5], we first applied score-informed solo/accompaniment source
separation [15] to extract the solo instrument, and then applied the
pYin pitch tracking algorithm [6] to extract frequency contours for
all notes.

Figure 1 shows seven randomly chosen example contours for
each dataset and each class. For instance, characteristic con-
tour shapes such as the periodic frequency modulation of vibrato
tones can be recognized for the playing style classification tasks
(GUITAR and WJD). For high-level classification tasks such as
genre classification (GENRE) and instrument classification (INST),
the classes tend to be less homogeneous in the sense that there are
often several different contour shapes associated to a single class.
Furthermore, some contours cover multiple playing techniques such
as an initial pitch slide followed by a vibrato (see WJD examples).

4. FEATURE REPRESENTATIONS

4.1. Hand-Crafted Audio Features

In our experiments, we use two hand-crafted features sets. The first
one is called BITTELI2 and was introduced in [13]. From this feature

2https://github.com/rabitt/motif

(a) GENRE (b) GUITAR

(c) INST (d) WJD

Fig. 1: Randomly selected contours from each class of the four
datasets introduced in Table 1.

set, we use 18 features including 6 features that capture the shape and
coverage of vibrato, 8 features derived from a polynomial approxi-
mation of frequency contours, as well as 4 features derived from
global statistics.

The second hand-crafted feature set is the PYMUS3 set, which
consists of 17 features including 3 features describing vibrato char-
acteristics, 10 features measuring different contour shape properties
related to fluctuation and gradient, as well as 4 features derived from
a temporal contour segmentation. The two features sets contain dif-
ferent types of features and overlap only with regard to vibrato rate
descriptors.

4.2. Feature Learning

Next, we introduce some feature sets that are automatically derived
using a data-driven approach based on CNNs. In particular, as
shown in Figure 3, we compare two neural network architectures
with one (CNN-1) or two processing blocks (CNN-2) followed by
two fully-connected (FC) layers. Each processing block includes
a one-dimensional convolutional layer (CONV) followed by batch-
normalization (BN) [16] and a rectified linear unit (ReLU), and a
dropout (DO) [17] layer. In each convolution layer, we empirically
selected 30 filters, each filter having a size of 10 (corresponding to

3https://github.com/jazzomat/python/tree/master/
pymus

487



BITTELI

PYMUS

CNN-1

CNN-2

H

W

Contour

Subcontours

Feature	
Extractors

Feature	
Vectors

Class	ProbabilitiesInput

BITTELI

PYMUS

Aggregation

be
nd

vib
ra
to

fa
ll

sli
de

Prediction

be
nd

vi
br
at
o

fa
ll

sli
de

be
nd

vi
br
at
o

fa
ll

sli
de

Fig. 2: Summary of the contour classification strategies. Variable-length contours can be processed solely by hand-crafted features (BITTELI,
PYMUS). Fixed-size subcontours can be processed by all feature extractors.

Table 2: Features included in the hand-crafted feature sets BITTELI
and PYMUS sorted by three feature categories (italic print). Salience-
based features are discarded.

BITTELI PYMUS

Vibrato features

Rate (1) Modulation frequency (1)
Extent (1) Modulation dominance (1)
Coverage features (4) Number of modulation periods (1)

Contour shape features

Polynomial-fit on frequency con-
tour (8)

Measures for intonation & fluctu-
ation (6)

Polynomial-fit on salience
contour (7)

Frequency gradient descriptors
(4)
Contour segmentation features (4)

Global statistics

Duration (1)
Pitch (3)
Salience (3)

18 (total) 17 (total)

a duration of 58 ms). We used the Adam optimizer, a learning rate
of 10−3, and a batch-size of 256. Optimizing the hyperparameters
is not within the scope of this paper.

Each contour is assigned to one class (compare Table 1). These
classes are used as target for the final softmax layer to train the mod-
els in a supervised fashion. After training, the activations of the
penultimate fully-connected layer are used as features. For training
the networks, we extract fixed-size subcontours from the variable
length contours as input data for the CNN model using a window
size W and a hopsize of 50 %. The class label of each contour is
transferred to its subcontours. Since a common range for the vibrato
rate is between 5 and 12 Hz [5], we use W = 34 (corresponding to
197.2 ms) as window size to capture at least one full vibrato period.
In our classification experiment described in Section 5, we include
all original contours that have a minimum length of 34 frames (197.2
ms). As shown in Figure 2, the predicted class probabilities on a
subcontour level are aggregated by averaging to obtain contour-level

Fig. 3: Neural network architecture used for automatic contour fea-
ture learning (see Section 4.2).

predictions.

5. EVALUATION

The four feature sets have comparable numbers of feature dimen-
sions: PYMUS (17), BITTELI (18), CNN-1 (17), and CNN-2 (17).
We perform a three-fold cross validation. In each fold, we repeat the
following procedure for each of the classification tasks: The current
dataset is randomly split into training and test set (80 % : 20 %) based
on unique file assignments to avoid that f0 contours from the same
recording end up in both sets. Using the subcontours extracted from
the training set as input and their class labels as targets, we train the
CNN-1 and CNN-2 models. Afterwards, we extract feature vectors
from the training set using all four feature extractors, normalize them
to zero mean and unit variance, and train four independent random
forest classifier models [18] with 50 trees each. Finally, we evalu-
ate the classification performance on the test set by applying feature
scaling using mean and standard variance values derived from the
training set and computing the F1 score of the model predictions.
The random forest classifier was chosen as it easily allows us to fur-
ther analyze the importance of different feature dimensions for the
trained models (compare Section 6.2). As illustrated in Figure 2, we
compare both subcontour-level and contour-level classification for
the two hand-crafted feature sets BITTELI and PYMUS. In addi-
tion, for the GENRE and INST dataset, we investigate a file-level
aggregation strategy by averaging over all contour-level class prob-
abilities.

Table 3 shows the mean F1 scores obtained from the cross-
validation folds for all combinations of classification-level, dataset,
and aggregation strategy. As general findings, we observe very
similar scores for both hand-crafted features and learned features
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Table 3: Mean F1 scores from 3-fold cross-validation. Results are
shown for different feature extractors, datasets, classification lev-
els (C = contour, SC = subcontour), and result aggregation level
(contour-level, file-level). Best results for each dataset are high-
lighted in bold print.

Aggr. Contour-Level File-Level
Extractor Dataset GENRE GUITAR INST WJD GENRE INST

BITTELI C 0.51 0.97 0.38 0.87 0.73 0.56
SC 0.54 0.96 0.43 0.82 0.76 0.54

PYMUS C 0.53 0.98 0.35 0.87 0.79 0.52
SC 0.55 0.97 0.31 0.83 0.85 0.45

CNN-1 SC 0.54 0.95 0.34 0.83 0.85 0.49
CNN-2 SC 0.63 0.96 0.43 0.84 0.94 0.67

as well as for subcontour and contour classification. Throughout
all feature extractors, aggregating the contour-level classification
results in file-level results clearly boosts the F1 scores by up to 0.24.

The highest scores are achieved for the two playing-style clas-
sification datasets GUITAR and WJD. While all four models per-
form comparably well on the easier-to-classify GUITAR dataset,
the hand-crafted features perform better on the WJD dataset. For the
more difficult classification tasks based on the INST and GENRE
datasets, the two-level CNN model (CNN-2) clearly outperforms
its simpler counterpart (CNN-1) and the two hand-crafted features.
Presumably, the CNN-2 model can learn to recognize more complex
contour shapes.

6. CNN MODEL INSPECTION

6.1. Prototype Contours

In the following, we aim to get a better insight into which contour
shapes the CNN-based features capture. As an example, we inves-
tigate the two-layer CNN-2 model. We use the activation maxi-
mization algorithm [19]4 to generate frequency contours that max-
imize the activations of each of the 17 neurons in the penultimate
dense layer, i. e., the individual feature dimension values. Figure 4
shows such contours for each of the four datasets. Despite the differ-
ent underlying classification tasks, the networks learn to recognize
similar contour shapes—increasing and decreasing frequency con-
tours (pitch slides), alternating sequences of increasing and decreas-
ing contour parts (pitch bends) as well as modulating (vibrato-like)
shapes.

6.2. Feature Set Redundancy

The contours shown in Figure 4 indicate a certain redundancy as sim-
ilar shapes can be found across neurons. In order to measure the in-
formation redundancy within different feature sets, we first compute
all pair-wise correlation coefficients between features of the same
set. Here we only focus on features extracted from subcontours. We
observe significantly higher mean correlation values of 0.451 for the
learned feature sets than for the hand-crafted feature sets (0.189).

Additionally, we analyze the feature importances, which mea-
sure their effect in the Random Forest models. Low information re-
dundancy leads to only a few features having high importance values
whereas high redundancy would result in an almost equal distribu-
tion. We compute the entropy H to measure the uniformity of the

4We used the keras-vis implementation of the activation maximization
algorithm [20] with hand-tuned parameter values tv weight = 0.01 and
lp norm weight = 0.01.

(a) GENRE (b) GUITAR (c) INST (d) WJD

Fig. 4: Normalized frequency contours that maximize neuron activa-
tions in penultimate dense layer, which are used as features vectors.

distribution over the feature importance values. We observe higher
entropy values for the feature learning configurations of 0.960 than
for the configurations using hand-crafted features (0.925). Both re-
sults indicate that discriminative information is more concentrated in
the hand-crafted features, where only a subset of the features have a
high effect in the classifier models. In contrast, the learned features
show a higher information redundancy across feature dimensions.

7. CONCLUSION

This paper compares hand-crafted features and automatically learned
features for different f0 contour classification tasks. Our findings
show that embedding features from a simple non-optimized neural
network architecture with two convolutional layers can outperform
hand-crafted features based on expert knowledge. Multiple con-
volutional layers allow for learning more complex contour shapes,
which is beneficial especially for higher-level tasks such as genre
and instrument recognition. The evaluation results show that us-
ing fixed-length subcontours in combination with an aggregation
strategy leads to comparable classification accuracies as compared
to an approach using global contour. As an advantage, classifying
subcontours allows for a more complex (time-dependent) descrip-
tion of playing techniques on a note-level (e. g., initial pitch bend
followed by a vibrato). Future work should address the use of
convolutional recurrent neural network architectures that allow to
classify input sequences of arbitrary length. A close investigation of
the CNN-based features revealed that the learned feature sets have a
higher redundancy across feature dimensions than the hand-crafted
features. Reducing the number of filters and the amount of redun-
dancy while maintaining the classification performance could be a
guideline for model size optimization.
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