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ABSTRACT

In recent years the task of downbeat tracking has received increasing
attention and the state of the art has been improved with the intro-
duction of deep learning methods. Among proposed solutions, exist-
ing systems exploit short-term musical rules as part of their language
modelling. In this work we show in an oracle scenario how including
longer-term musical rules, in particular music structure, can enhance
downbeat estimation. We introduce a skip-chain conditional random
field language model for downbeat tracking designed to include sec-
tion information in an unified and flexible framework. We combine
this model with a state-of-the-art convolutional-recurrent network
and we contrast the system’s performance to the commonly used
Bar Pointer model. Our experiments on the popular Beatles dataset
show that incorporating structure information in the language model
leads to more consistent and more robust downbeat estimations.

Index Terms— Downbeat Tracking, Music Structure, Deep
Learning, Skip-Chain Conditional Random Fields, Convolutional-
Recurrent Neural Networks.

1. INTRODUCTION

Downbeat tracking consists of retrieving the first beat of each bar
in a music excerpt. It is an important task in Music Information
Retrieval (MIR) which provides useful pre-processing tools for sev-
eral applications such as automatic music transcription [1], compu-
tational musicology [2] or rhythm similarity [3].

In general, the pipeline of downbeat tracking systems based on
deep learning consists of a first stage of low-level feature extrac-
tion, where representations such as mel-spectrograms or chroma-
grams are computed and synchronized to some temporal grid [4, 5].
Subsequently, the representations are input to a deep neural network
(DNN) which is used either to extract more complex features to feed
another machine learning model [6], or to produce a likelihood of
possible downbeat candidates [7, 5, 8]. The likelihood is fed to a lan-
guage model such as Hidden Markov Models (HMM:s) or Dynamic
Bayesian Networks (DBNs), which is used to smooth the estimation
obtained by the DNNs. In most existing systems, the language mod-
els use local transition rules and observations, which usually model
relations between neighbouring events in time, up to the bar scale
[5,9, 8], not exploiting longer-term musical dependencies.

In diverse music styles such as pop, rock or classical music the
format of repeated sections is common practice. Typically, a song
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would feature an intro, verses and refrain, noted using symbols such
as ‘AAB’. It is then likely that music objects such as chord progres-
sions or metric structure are similar among repetitions. Considering
information from several instances of the same section is likely to
provide complementary information and thus improve models’ esti-
mations [10].

1.1. Our contributions

In this paper we test whether for a fixed system, the introduction
of music structure information improves downbeat tracking per-
formance. We propose a novel skip-chain CRF language model
for downbeat tracking that incorporates structure information in a
flexible way, and we assess its performance using a convolutional-
recurrent network for the observations. We compare the perfor-
mance of this language model with a popular Bayesian network
model [11, 5], showing its advantages. We also contrast the model
to simpler approaches for including structural information. We val-
idate our claim by assessing the different methods using annotated
beats and sections on the Beatles songs dataset, to isolate noise due
to beat/section estimation. Our experiments show that including
music structure in language models for downbeat tracking helps in
challenging cases, obtaining more consistent downbeat estimations.

2. RELATED WORK

Downbeat tracking has received substantial attention in the MIR
community in recent years. Several methods exploiting deep
learning were proposed, covering different DNN architectures that
have been shown to be adequate for downbeat tracking: convolu-
tional neural networks (CNNs) [4, 8, 12], bi-directional long-short
term memory networks [7], bi-directional gated recurrent units
(Bi-GRUs) [5] and a combination of convolutional and recurrent
networks (CRNNs) [13]. Different input representations such as
mel-spectrograms, chromagrams, multi-band spectral flux, low-
frequency spectrograms and combinations of them have been also
explored [14, 15]. Regardless of the architecture, most systems rely
on HMMs or DBNs for the final downbeat inference. In particular,
the Bar Pointer model [11] has received considerable attention and it
has been refined in different scenarios such as inferring tempo, time
signature and downbeats [12] or long metrical cycles [16]. In these
models the relation between latent-states are only modeled between
time consecutive events, ignoring longer term dependencies, which
is a considerable simplification. Music has rich and interrelated
dependencies within different time scales, thus accounting for music
attributes in both short and long term is a more realistic approach.
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The use of music structure information to inform other MIR
tasks has been previously explored. Dannenberg [17] proposed a
system that incorporates structure information to perform beat track-
ing. He considers beat tracking as an optimization problem where
the goal is to infer the best beat sequence given the constraint of a
chroma similarity matrix. Mauch et al. [10] addressed the use of
musical structure to enhance automatic chord transcription. Their
method consists in averaging the chroma feature inputs in repeated
sections and replace the occurrences by the average of the chroma.
The authors showed the suitability of this approach for chord recog-
nition, since it helps in obtaining consistent and more readable chord
progressions. Although both methods showed promising results,
they use very simple features and have limited flexibility to include
other musically relevant information. Papadopoulos et al. [18] pro-
posed the use of Markov Logic Networks to include music structure
information for chord transcription in a flexible way. The authors
model the probability of a chord progression to occur in repeated
occurrences of similar sections given the underlying chroma obser-
vations. This work showed that graphical models are capable of in-
corporating musical knowledge in different time scales in a flexible
and unified manner. The main limitations of this work are the use of
simple features and the very slow inference.

Among probabilistic graphical models, Conditional Random
Fields (CRFs) are discriminative classifiers for structured data pre-
diction, which allow for modeling complex and interrelated prop-
erties both in the observations and output labels at different time
scales, thus making them appealing for music modelling. Linear-
chain CRFs have been successfully applied in MIR tasks such as
beat tracking [19] and downbeat tracking [6], but those models are
still limited to relating time neighbouring output labels. In turn,
skip-chain CRFs have been successfully applied in Natural Lan-
guage Processing (NLP), Sutton et al. [20] used skip-chain CRFs
in a simple speaker identification task on seminar announcements,
showing that they outperform linear-chain CRFs while modelling
more complex structure between words.

3. PROPOSED METHOD

Our model consists of two main stages: first we compute the down-
beat likelihood using a CRNN, and then we obtain the downbeat
positions with a structure-informed skip-chain CRF (SCCRF). The
different components are explained in the following.

3.1. Convolutional-Recurrent Network

We use the CRNN proposed in our previous work [13] to obtain
the observations of our model. It consists of an ensemble of two
CRNNs, representing the harmonic and percussive content of the
signal respectively. In particular, to simplify our analysis we use
the CRNN of the CUBd configuration in [13] which has beat-
synchronous features and no structured encoding.

Briefly explained, a set of beat-synchronous features describing
percussive content, based on a multi-band spectral flux, and a har-
monic content’s representation based on the Chroma-Log-Pitch [21]
are the inputs of each CRNN in the ensemble. Each beat is fed into
a CRNN considering a context window of approximately one bar.
First the CNN processes each window independently, and its output
is then fed to the recurrent network. The CNN architecture consists
of a cascade of convolutional and max-pooling layers, with dropout
used during training to avoid over-fitting, and batch normalization to
avoid small values within the DNN that could hurt performance.
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The recurrent layer consists of a 512-dimension Bi-GRU. The
last layer of the network is a fully connected layer with a sigmoid
activation, resulting in a downbeat likelihood per time unit. The op-
timization of the model parameters is carried out by minimizing the
binary-cross-entropy between the estimated and reference observa-
tions. We refer the interested reader to [13] for further information.

3.2. Skip-Chain Conditional Random Field model
3.2.1. Model

The SCCRF model consists of a linear-chain CRF with addi-
tional long-distance connections between nodes, so called skip-
connections [20]. The evidence at one endpoint of the skip connec-
tion influences the label at the other distant endpoint, as illustrated in
Figure 1. Formally, the conditional probability of a label sequence
y = (y1, ..., yr) of length T" given an input sequence of observations
x = (x1,...,x7) is given by:

T
PN = —— [ velwer ve-1,906we %) [ tuwusvor®)
t=1

Z(X) (u,v)ET

where 1); is the transition potential for the linear-chain (neighbouring
nodes), ¢ is the observation potential and )., is the potential of the
skip connections, which is defined for a pre-selected subset of nodes
7. Note that the transition and observation potentials play a similar
role to transition and observation probabilities in DBNs or HMMs,
with the difference that the potentials in a CRF are not proper prob-
abilities and thus the need for the normalization factor Z(x). The
skip potential also differs by modeling interactions between distant
nodes, which is possible given the flexibility of CRFs in terms of
independence assumptions [22].

We consider a set of labels ) which represents the beat position
inside a bar. Following [5, 7], we consider bar lengths of 3 and 4
beats, corresponding to 3/4 and 4/4 meters, and we model the beat
position inside different time signatures as separate labels. The first
beat in a 3/4 time signature will have a different label compared to
the first beat of a 4/4 time signature. The output labels y are a func-
tion of two variables: the beat position b € B = {1, ..., bmaz(r)}
and the number of beats per bar € R = {r1,...,r, }, which re-
lates to the time signature of the piece. This results in seven possible
labels Y = {1, .., T}, one for each position b in R = {3, 4}, i.e. the
second beat of a 4/4 bar wouldbe b = 2, r =4 and y = 5.

Section A

Section B Section A

Fig. 1. SCCREF graph. Observations and labels are indicated as gray
and white nodes respectively. Beats of repeated section occurrences
are connected to each other.

Transition potential 1);: the transition potential depends only on con-
secutive labels ¢ (¢, Y+—1,X) = ¢ (Yt, y+—1). Similar to [5, 6, 19],
it forces the beat position b inside a bar to increase by one up to the
maximum bar length considered, and to switch to one at the end of



the bar. Time signature changes are unlikely and only allowed at the
end of the bar. Formally:

1 ifby =bi—1 +1
l—pifre=ri—1,be =1, by—1 =111
P ifry #re1, by =1, bp_1 =141
0 otherwise

where p = 107° is the probability of changing the time signature.
We chose the value of p similarly to the DBN in [5, 13].

P (be,be—1,7,7e-1) =

Observation Potential ¢: the observation potential depends on the
current observation z; so that ¢(y:,x) = ¢(yt, x+), and is given by:

B(br, 1) = {a(t) it b =1

1—a(t) otherwise

where a(t) is the downbeat likelihood estimated by the CRNN.

Skip potential 1. the skip potential depends on two labels y.., Y.
which are not neighbours in the time axis, and is independent from
the observations: ¥y (Yu, Yv, X) = Yuw (Yu, Y»). It is given by:
11—«
1

(i

When connected, two distant nodes ¥, and y, are constrained to
have the same label by a factor «, and to have different labels by
fy‘*—f‘l (where the different labels are equally possible). We found
the best value oo = 0.3 on a grid search between 0 and 1.

if by = by, 7y =74
otherwise.

«

wuv(yuvyv) = w(bu7bv7ru7r’0)

Graph structure: the subset Z that determines the skip connections
is obtained using the musical section labels, given as input to the
model. If a section s has multiple occurrences, we connect the first
beats of each occurrence of s to each other, the second ones to each
other, and so on, as shown in Figure 1. If the section repetitions are
of different lengths, we connect the beats until the shortest section
length is reached. We connect the beats of each occurrence of s, i.e.
the more repetitions, the more connections.

3.2.2. Inference

Because the loops in the SCCRF can be long and overlapping,
exact inference is intractable [20]. For this reason, we perform
loopy-belief propagation (LBP) for inference [23]. LBP is an al-
gorithm based on message updates between nodes. Although the
algorithm is not exact and it is not guaranteed to converge if the
model is not a tree, it has been shown to be empirically success-
ful in a wide variety of domains such as text processing, vision,
and error-correcting codes [24]. In the LBP algorithm, each node
7 sends a message to its neighbours, where neighbours are di-
rectly connected nodes in the graph no matter how distant those
nodes are in time. The message from node 7 to node j is given
by pij(y;) = maxy, i(ys, i) Vis (Yi, ¥5) [e iy s i (i)
where N (7)\j indicates the neighbours of node i except node j,
and U;; = o if |i — j| = 1 and ¥;; = )y, otherwise. This
message exchange continues until the messages converge. Once
convergence is achieved the belief of each node is computed as
bi(yi) = ¢i(yi,®i) [[;enq) 1ii(yi) and final inference is per-
formed by y* = arg maxyb(y).

4. EXPERIMENTS

4.1. Experimental Setup

We investigate whether adding long-range interaction terms to lan-
guage models can improve downbeat tracking in a fixed setup. To

483

that purpose we use our state-of-the-art CRNN-DBN system pro-
posed in [13] as baseline, and we compare it to different music
structure-informed systems. We use manually annotated beats and
sections to avoid noise due to bad beat/segment estimations, thus
focusing this study on the analysis of the usefulness of music struc-
ture information for the downbeat tracking task. We leave the issue
of exploiting instead automatically detected (hence imperfect) music
sections for future work.

4.1.1. Datasets

We use the Beatles dataset, since it has beat, downbeat and music
structure annotations. It consists of 179 Beatles songs up to 8h 01m
of music. We follow the leave-one-dataset-out evaluation scheme of
[5, 8, 13] and we train the CRNN network with 6 Western music
datasets leaving the Beatles dataset out. Those datasets are: Klapuri,
R. Williams, Rock, RWC Pop, Ballroom and Hainsworth, to a total of
35h 03m of music.

4.1.2. Implementation, training and evaluation metrics

The deep learning models were implemented with Keras 2.0.6 and
TensorFlow 1.2.0 [1, 9]. We use the ADAM optimizer [15] with de-
fault parameters. We stop training after 10 epochs without improve-
ment on validation accuracy, up to a maximum of 100 epochs. The
low-level representations were extracted using the madmom library
in Python [25] and mapped to the beat grid. The SCCRF was im-
plemented using the factorgraph library.! We report the F-measure
score following previous works. To determine statistical signifi-
cance, we perform a Friedman test followed by post-hoc Conover
tests for pairwise differences using Bonferroni-Holm correction for
multiple testing [26]. Message convergence in the LBP algorithm is
given by |ui; — /LZ-L_1| < 7 Vi,j where m is the current iteration
and 7 is a tolerance; or a maximum amount of iterations is reached.
We set 7 = 10~® and consider a maximum of 3000 iterations. Mes-
sages are normalized at each iteration to avoid values going to zero
easily in practice. Inference takes a median time of 3.6s on 2m 30s
of music using an Intel Xeon CPU E5-2643 v4 @ 3.40GHz.

4.2. Results and discussion

We compare the SCCRF performance to the DBN in [5, 13], which is
our state-of-the-art baseline. We employ the downbeat likelihood es-
timated by the CRNN as observations for both language models. To
compare the SCCRF to simpler approaches aware of structure infor-
mation, we enhance the CRNN estimation before performing infer-
ence with the DBN by: averaging the input representations of section
repetitions, replacing the occurrences by the average and feeding the
network with the averaged features; and applying the same idea but
averaging the downbeat likelihood estimation of repeated sections
instead. We name these two approaches DBN_AVF and DBN_AVA
respectively. We include a non structure-informed version of our
model, without the skip potentials, in order to assess possible differ-
ences over the DBN due to the inference method. This model is a
linear-chain CRF, and is denoted as LCCRF. Figure 3 summarizes
the results of the different configurations.

The standard DBN approach benefits from adding structural in-
formation in terms of reducing variance in the performance. The
SCCRF model brings the most benefit out of the compared models,
due to improvement in difficult cases. The LCCRF performance is
equivalent to the DBN, showing that the LBP algorithm is not the

"https://github.com/mbforbes/py-factorgraph.
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Fig. 2. Excerpt of ‘Blue Jay Way’. Upper figure shows sections and bottom figure shows model’s estimations. Dashed lines denote ground-
truth downbeat positions, the continuous curve is the downbeat likelihood estimated by the CRNN (without any structure information). The
SCCRF improves downbeat tracking performance from 0.35 to 0.72 F-measure with respect to the non-structured DBN of [13].

source of improvement but the addition of structure. Mean and me-
dian performances of the SCCRF and DBN models are similar, with
their difference not being statistically significant.
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Fig. 3. F-measure scores. Boxes show median value and quartiles,
whiskers the rest of the distribution. Black dots denote mean values.

Figure 2 illustrates a typical example where the inclusion of
structure information and the flexibility of the SCCRF model help
in the downbeat estimation. In this excerpt the CRNN likelihood
estimation is inconsistent in different instances of the same section,
and in particular, it is correct in some instances and wrong in others.
For instance, the downbeat likelihood has peaks in the right posi-
tions in one verse and the estimation is partially correct or incorrect
in the two others. The SCCRF downbeat estimation is consistent
over all section occurrences despite the discordant likelihood esti-
mations, and more accurate in the overall performance. In turn, the
DBN is not able to overcome the likelihood estimation errors, which
is expected given the limited information it handles and the hard
transition constraints. The time signature of this song is mostly 4/4,
with the exception of one bar in 3/4 at the end of each verse. The
SCCREF finds there is a 3/4 transition bar between the verse and the
refrain, but it estimates that the 3/4 bar is in the refrain instead of the
end of the verse. We hypothesize that this is due to the observation
values which give more evidence of having a 3/4 bar in the posi-
tion where the model finds it. The combination of the information
in different time scales and the inference carried out globally make
the model capable of identifying rare music variations and to fit the
global time signature consistently.

Figure 4 shows an example of the downbeat estimation with the
DBN with structure-enhanced CRNN observations. The three like-
lihood estimations correspond to the three models DBN, DBN_AVF
and DBN_AVA, and the downbeat positions found by the DBN using
each set of observations are shown with dots of the respective color.
We noticed that the inclusion of structure information through aver-
aging features (DBN_AVF) has limited impact on the performance.
Averaging the likelihood of different section occurrences presents
the advantage that the likelihood has higher values where the CRNN
finds strong evidence of downbeat occurrences and smaller values
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when it is unclear, so the average compensates with the correct es-
timation in many cases. Nevertheless, in examples like the one of
Figure 4 which have shifted likelihood estimations and transition
bars, the downbeat estimation of DBN_AVF and DBN_AVA do not
achieve the consistency of the SCCRF on the different occurrences
of the same section, indicating that it is necessary to have a flexible
and robust language model to account for this information. Finally,
we noticed examples where the DBN performance is better than the
SCCRE. Those are mainly examples where the annotations have con-
tradictions such as two occurrences of the same section beginning in
different parts of a bar, so the skip connections of the SCCRF model
are misaligned and the information they provide is inaccurate.

Time

Fig. 4. Excerpt of ‘Blue Jay Way’. Sections are shown on top and
DBN estimations with enhanced CRNN observations in the bottom.
Dots denote the downbeat positions estimated by the DBN in each
case. Dash lines denote the ground-truth positions.

5. CONCLUSIONS AND FUTURE WORK

We have presented a Skip-Chain Conditional Random Field lan-
guage model for downbeat tracking which exploits music structure
information in a unified and flexible manner. We have shown that
using knowledge of repeating structure in the language model im-
proves the downbeat estimation over state-of-the-art approaches by
providing consistency among occurrences of the same section, be-
ing able to handle rare music variations. The proposed method can
be directly applied to beat tracking, and easily extended to the joint
tracking of beats and downbeats by incorporating suitable potentials.
The structure of the skip-chain graph could be obtained by estimat-
ing boundaries and labels of sections with an external algorithm, in
a fully automatic fashion. We will address this as an extension of
our method to automatically estimate the graph structure. Consider-
ing information about rhythmic patterns as an intermediate temporal
scale between bars and sections is a promising idea and will be also
explored in future work.
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