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ABSTRACT

Automatic singing evaluation without reference melody has
long been a difficult problem. This paper aims to pilot a
novel data driven approach to tackle this artistic problem. We
constructed a large scale dataset and designed an innovative Bi-
Dense neural network which can address this task efficiently.
Though the singing evaluation is quite a subjective task and
depends a lot on listeners’ preferences, we showed that a spe-
cific group has consistency on the singing evaluations, and it
is possible to train a model to learn the subjective preferences
of this group. In this paper, a large amount of singing clips
and corresponding human gradings were collected. And an
elaborate designed Bi-DenseNet was trained to discriminate
the good singings from the poor ones. The experiments demon-
strated the proposed network performs better than the existing
networks for singing evaluation task.

Index Terms— singing evaluation, Bi-DenseNet

1. INTRODUCTION

Singing evaluation has long been thought as a complex task,
which inherently is subjective and listener dependent [1]. Gen-
erally, a listener’s preference on the singings is influenced by
one’s experience, character or something virtual we called
taste. In the past, the singing evaluation has been mostly
achieved by human music experts, who are responsible to tell
the public if a song is well sung by a specific person, which
typically is a professional singer. It is also common that these
experts disagree with each other in their evaluations. Nowa-
days, besides professional singers, everyone can sing a song
and publish it on the social networks. Hundreds of millions
of singing works have been published everyday on various
website and apps. On one hand, it’s impossible for human
experts to listen all these songs and score them. On the other
hand, the preferences of the human experts can not represent
those of ordinary people. Therefore, an automatic singing eval-
uation system can be very useful for karaoke scoring, singing
recommendation, and entertainment singing contest. More
importantly, this work is also a great trial to bridge the field
gap between vocal artists and deep learning techniques.

Singing evaluation has not received too much research
endeavor for a long time. A few investigators from percep-

tual domain and MIR domain made significant contributions
to the study of solo singing performance from the auditory-
perceptual aspect and acoustic aspect. Wapnick and Ekholm
quantified the correlations between12 perceptual items (includ-
ing intrinsic qualities, execution abilities, diction and others)
and the overall evaluation scores [2]. Oates Jennifer et.al [3]
tested the similar items and developed an auditory-perceptual
rating instrument for operatic singing voice. Garnier Mava
et.al [4] defined the notion of voice quality in Western lyrical
singing and investigated significant and objective criteria to
characterize it, from both cognitive and acoustic points of view.
Nakano et.al [5] explored the criteria that human subjects used
in judging singing skill and the stability of their judgments.
They focused on ordinary, common person’s singing, and their
mutual evaluations. They showed that subjects depend more
on objective common features (such as tonal and rhythmical
stability) rather than subjective preference. They also found
that only a short sequence (3-5 sec.) is sufficient for judging
good/poor. Cao Chuan et al. [6] [1] studied the subjective
criteria for untrained singers’s singing voice quality evalua-
tion, including intonation accuracy, rhythm consistency, timbre
brightness and vocal clarity.

In addition to these perceptual investigation, various auto-
matic singing evaluation methods have been proposed in the
past years. The existing automatic singing evaluation meth-
ods can be classified according to if the reference melody is
used. The reference melody based methods extract various
acoustic features, including pitch, volume, rhythm, timbre and
others, from the singing clips. Then compared these features
to those of the reference basis, which is often the vocal track
from original music recording (CD or VCD) [7] [8]. How-
ever, in many cases, we have no access to the reference vocal
tracks. Human subjects can consistently evaluate the singing
for unknown melodies [5]. This suggests that their evaluation
utilizes easily discernible features which are independent of
the particular singer or melody. Nakano et.al [9] proposed
an automatic singing skill evaluation method for unknown
melodies. They showed that pitch interval accuracy and vi-
brato are useful acoustic features for singing skills evaluation
of unknown singers and melodies. These hand-crafted features
can only reflect specific aspects of the singing skills, which
cannot represent the overall singing levels.

This paper aims to build an automatic singing evaluation
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model without reference basis. The study object is the ordinary
people’s judgements on common peoples’s singing clips. With
in this scope, we constructed a large singing dataset, named
SIE dataset, and the human grades for each singing clips in this
dataset. We proposed a novel Bi-DenseNet which represents
singing voice features efficiently. The experiments showed
that the proposed Bi-DenseNet outperforms the existing neural
networks on the singing evaluation task.

Section 2 introduces the collected dataset and singing eval-
uation background. Section 3 describes the proposed Bi-Dense
neural network. Section 4 is the experiments and analysis. Sec-
tion 5 concludes this paper.

2. THE SIE DATASET

2.1. Data collection

We collected the singing clips tagged ’solo singing’ from
Kwai1. Totally 30, 570 clips published between Jun. 1st. and
Aug. 31, 2018 were obtained. These clips were sung and pub-
lished by the common users of Kwai application. Their record-
ing devices varied from user to user. Most users recorded
with their cell phones. Others may use different microphones.
Besides, the recording environments were also varied, ranging
from at home, outdoor, in car to on bus. We went through these
audio clips, and removed those accompanied by background
music or other instruments. 19, 478 pure solo singing clips
are remained. The time length of these clips ranges from 10
seconds to 3 minutes. All these clips were resampled to 16K
Hz, and saved as mono channel 16 bit wave files.

2.2. Human grading

Each of the above pure solo singing wave files were presented
to 10 listeners independently. All these listeners are our work-
mates and of college degrees or above, with ages 20 to 30.
These listeners were required to listen to each singing clip
completely and classify the presented clip into good, inter-
mediate and poor. In order to let the listeners be familiar
with the distribution of the whole dataset and understand their
tasks better, firstly 2700 singing clips were sampled from the
whole dataset randomly and listeners listened to these clips
and tried to classify them into three classes. Then the total
19,478 singing clips were presented to listeners one by one,
and the listeners gave their classification results for each data.
In addition, the genders of the singers for each clips were
labelled by other labelers.

Each of the 19,478 singing clips has 10 classification labels
from the 10 listeners. To measure the consistency of the ten
labels for each clips. We computed the variational ratio for
each clip. The variational ratio is a simple measure of statisti-
cal dispersion of a nominal distributions, and is defined as the

1https://www.kwai.com. Kwai is a mobile social application on which
everyone can publish short video works

proportion of cases which are not in the mode category [10].
The variational ratio for each clip was computed and then av-
eraged over the whole dataset. The averaged variational ratio
is 0.3277, which implies that for a given singing clip, over 2/3
listeners are inclined to give the same classification labels. We
conjectured that maybe it is possible to use the ’average label’
to represent the group preference on each clip. Following
this supposition, we assigned a score to each label class. The
scores for good, intermediate and poor are 5, 3, 1, respectively.
We can compute the coefficient of variation (CV) [10] for the
ten labels of each clip. The CV, which is defined as the ratio of
standard deviation to the mean, is a standardized measure of
dispersion of a frequency distribution. The average CV over
the whole dataset is 0.3320, which indicates that the scores’
deviation from the mean is relatively low (comparing to when
the scores are evenly dispersed, CV in this case is greater than
0.5). Hence we can use the average score to denote the score
of a specific singing clip. To further eliminate confusions,
the clips with average score equal to or greater than 4.0 are
labelled as good, and the clips with average score equal to or
less than 2.0 are labelled as poor. Other clips were treated as
others.

2.3. Dataset construction

We dropped the data labelled as others, and only data labelled
as good and poor were kept. As proved in [5]. A 3-5 seconds
short sequence is sufficient for judging good/poor. Consider-
ing there are maybe blanks at the start/end or middle part of
a song, we extended this time length to 10 seconds. To stan-
dardize this dataset, we segmented all the singing clips using
10-seconds sliding window, with 2.5s hop size. More than 33
thousands segments were obtained. The data distribution of
this set is shown in Table 1. This dataset, named as the SIE
(SingIng Evaluation) dataset, is imbalanced across the classes
and genders.

Based on the SIE set, we constructed a balanced dataset
(SIE-22k), shown in Table 2. The SIE-22k dataset consists of
a training set and a testing set. All the segments in training
set and testing set come from different singing clips. These
data are evenly distributed in classes and genders. Note that
only female and male singing clips were remained for sake
of clarity.

3. MODEL DESIGN FOR SINGING EVALUATION

3.1. Preliminary

More and more researches use deep learning models for audio
analysis tasks [11].Though recurrent neural networks (RNNs)
are powerful in modeling sequential data. Convolutional neural
networks (CNNs) are usually used to learn efficient representa-
tions from audio waveforms [12] or fft-spectrograms [13] [14].
Despite that the CNNs were initially created for the image
classification tasks, we have seen some successful cases that
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gender good poor
female 5657 6257

male 5878 11302
female&male 44 63

unidentified 12 4425

Table 1. The number of segments in the whole singing eval-
uation (SIE) dataset. The gender of singers are also shown.
’female & male’ means there are both female and male singers
in this clip. ’unidentified’ means that it’s hard to identify the
gender of the singers according to the singing clips. Most
’unidentified’ singers are children.

set gender good poor

training female 4396 4396
male 4396 4396

testing female 1235 1235
male 1235 1235

Table 2. The number of segments in the balanced singing
evaluation dataset ( SIE-22k).

the existing CNN architectures can be directly transferred to
audio processing tasks. For example, Hershey et al. used
Alex Net and VGGs for audio events detection and audio tag-
ging [15]. Naoya and Yuki used DenseNet for audio source
separation [16].

In this paper, we proposed an innovative neural network
architecture named Bi-DenseNet to learn to discriminate the
good singings from the poor singings. The Bi-DenseNet was
created on the basis of DenseNet, which was proposed by Gao
Huang et.al. in [17]. The DenseNet takes the insights of the
skip connection to the extreme, in which the output of a layer
is connected to all the subsequent layers in the module. The
DenseNet can also be viewed as multi-scale feature extractor
that features in lower scale are used to generate higher scale
features and finally features of all scales are combined together
to compute the classification results.

However, the original DenseNet was well-designed for
image processing task. Its convolutional layers are efficient
to extract image features. Directly applying this architecture
to music data does not make sense. In this paper, we tailored
the DenseNet to the singing evaluation task. As stated in [6],
the most relevant features for singing evaluation include pitch,
rhythm, timbre. The proposed Bi-DenseNet was designed to
account for these multi-scale temporal and spectral features of
singings.

3.2. Bi-DenseNet

The model architecture of Bi-DenseNet is shown in Fig. 1.
The 10 seconds 16K Hz singing segments were transformed to

time-frequency domain through the STFT with hann window
of 1024 point, and hop of 512 point, resulting to a 513× 313
magnitude spectrograms, which were taken as input to the net-
work. The Bi-DenseNet is composed of the input convolution
block, K Bi-Dense blocks and transition layers, and the output
layers.

Input Conv. blocks. The timbre of singers are mostly
featured by the pitch and its harmonic partials, which mostly
spread along the frequency axis in the time-frequency domain.
The rhythm and structure of a singing related to local patterns
in short and long time-scales. [14] and [18] designed the
convolutional filters using domain knowledge to extract the
timbre and temporal features. Here, we designed an efficient
convolution layer to extract features from the input magnitude
spectrograms. This layer is constituted with a set of horizontal
and vertical rectangular convolutional filters to accomodate
the temporal and spectral features of singing segments. The
vertical filters are of shape M × 3, with M ∈ [128, 196, 256],
12 filters for each shape. The horizontal filters are of shape
3×N , with N ∈ [64, 128, 256, 320], 16 filters for each shape.
Strides of these filters are devised to be 2 × 1. Stride 2 in
frequency axis can reduce the frequence dimension of input
spectrograms by two times without losing any information.
But stride> 1 in time axis does not make sense, it will distort
the sequence and loss rhythm information. Hence the the
stride 1 is used for time axis. The outputs of the different
convolutional filters are combined together by concatenating
the channel axis and then fed to the Bi-Dense blocks for further
process.

Bi-Dense blocks. This block consists of L composite func-
tions, each of which comprise three consecutive operations:
batch normalization, rectified linear unit(ReLU), and convo-
lutions. To better resolve the feature output above, we placed
parallel convolution filter banks in the convolution layer of
each composite function. Specifically, each convolution layer
comprises 12 horizontal filters of shape 1× 5 and 12 vertical
filters of shape 5×1. The outputs of these convolutional banks
in each layer are concatenated together and input to all the
subsequent composite functions. Strides for all the convolu-
tions are 1× 1. 20% dropout is applied after each convolution
layers.

Transition layers. As devised in the original DenseNet,
the transition layers consist four consecutive operations: batch
normalization, ReLU, a 3 × 3 convolution, and an average
pooling of 2× 2. The number of feature-maps is reduced by a
factor of r. We chose r = 0.5 in this paper.

Output layers. The output from the last Bi-Dense block
is global averaged and then passed to a linear transformation
layer followed by 2-way softmax activation.

4. EXPERIMENTS AND ANALYSIS

To prove that the singing evaluation task can be addressed
via the proposed Bi-Dense neural network, we devised a set
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Fig. 1. Model architecture. Left: Overview of the blocks in Bi-DenseNet model. Top-right: The Bi-Dense block. Bottom-Middle:
The input convolutional blocks. Bottom-right: The transition layer. The red circles in the Bi-Dense block correspond the
operations ’Batch Normalization-Relu’, k and s denote the kernel and stride size respectively. c in the transition layers denotes
the number of input channels, r is the reduction factor.

Models & Param. Precision (%) Recall (%) Acc (%).good poor good poor
VGG-E - 50.00 0.0 100.0 0.0 50.00

DenseNet-10 K=1, L=8 96.73 72.78 63.40 97.85 80.63
DenseNet-27 K=4, L=6 96.36 78.14 72.79 97.25 85.02

Bi-DenseNet-10 K=1, L=8 81.82 85.10 85.83 80.93 83.38
Bi-DenseNet-27 K=4, L=6 92.74 86.81 85.83 93.28 89.55

Table 3. The classification results on the SIE-22k test set. Acc.
denotes the classification accuracy. K is the number of Dense
blocks in the model, L is the number of composite functions
in each block.

of comparison experiments on the SIE-22k dataset. The fft-
spectrograms of the 10 seconds segments were computed as
above. Then the fft-spectrograms were compressed by apply-
ing the element-wise dynamic range compression function
f(x) = log(1 + C · x), where C = 10, 000 is a constant
controlling the amount of compression [19]. Global mean and
standard deviation were computed over the training set. The
compressed fft-spectrograms were normalized to zero mean
and unit variance. The loss function used in this paper was
cross entropy. The Bi-DenseNet was trained using momentum
gradient decent method with Nesterov momentum 0.9 [20].
The initial learning rate is set to 0.1, and is divided by 10 at the
200k, 300k, and 500k training steps. Batch size for training
was set to 4. The model was trained on the training set of
SIE-22k, and tested on the test set. Different parameters of the
model were explored.

For comparision, we also tested the performance of exist-
ing neural networks, the Vgg-E net and the original DenseNet.

These models are trained under the same condition, except
that the initial learning rate for VGG-E was set to 1e− 3. The
classification results for these models are shown in Table 3.
Precisions and recalls for the good and poor classes as well
as the classification accuracy are shown. From this table, we
can see that the VGG-E model failed on the singing evaluation
task, all the tested clips were classified as good. The original
DenseNets achieved relatively better results. However, they
performed unequally on good and poor classes. Significant
numbers of good samples were classified as poor, resulting
in low recalls on the good class. The proposed Bi-DenseNets
perform more evenly among two classes, and outperform the
original DenseNets under the same parameters in terms of the
overall classification accuracy. The Bi-DenseNet-27 achieved
the highest overall classification accuracy among all the tested
networks.

5. CONCLUSION

This paper aims to build an automatic singing evaluation
model which can discriminate the good singings from the
poor singings. We firstly collected large amounts of singing
clips sung by common people and the corresponding grades
evaluated by ordinary listeners. A balanced dataset SIE-22k
were constructed for the training and testing. We proposed
a novel Bi-DenseNet which is suitable for audio processing
and can extract efficient features from singing spectrograms.
The experiments demonstrated that the proposed Bi-DenseNet
performs better for singing evaluation task than the existing
networks, including the VGG-E and the original DenseNet.
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