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ABSTRACT

Within Music Information Retrieval (MIR), prominent tasks — in-
cluding pitch-tracking, source-separation, super-resolution, and syn-
thesis — typically call for specialised methods, despite their similar-
ities. Conditional Generative Adversarial Networks (cGANs) have
been shown to be highly versatile in learning general image-to-image
translations, but have not yet been adapted across MIR. In this work,
we present an end-to-end supervisable architecture to perform all
aforementioned audio tasks, consisting of a WaveNet synthesiser
conditioned on the output of a jointly-trained cGAN spectrogram
translator. In doing so, we demonstrate the potential of such flexi-
ble techniques to unify MIR tasks, promote efficient transfer learn-
ing, and converge research to the improvement of powerful, general
methods. Finally, to the best of our knowledge, we present the first
application of GANs to guided instrument synthesis.

Index Terms— music information retrieval, generative adver-
sarial network, audio modelling, synthesis

1. INTRODUCTION

Within Music Information Retrieval (MIR), the prominent tasks of
pitch-tracking, source-separation, super-resolution, and synthe-
sis are usually treated as distinctly different tasks, employing widely
varying techniques [1, 2]. We suspect some redundancy in this ap-
proach; humans can listen for particular instruments in an ensem-
ble, track their behaviour, and imagine ‘hearing’ them without exter-
nal stimuli, all as a by-product of learning each instrument’s sound.
Consequently, we expect that methods for processing audio should
be adept in several such tasks, jointly in a multi-task learning setting.

Despite requiring different methods, time-frequency spectro-
grams are central to most current techniques. Recently, WaveNets
[3] were shown to reconstruct such spectrograms more accurately
than the long-standing Griffin-Lim algorithm [4], yet this has barely
been applied outside of speech processing. Meanwhile, image trans-
lation models such as Generative Adversarial Networks (GANs)
have achieved wide success; several papers have investigated their
application to speech audio [5, 6]. Yet, little work has been done
to investigate their general application across multiple tasks, or to
instrumental audio. Therefore, to frame the aforementioned tasks as
the same underlying problem is an attractive pursuit, potentially al-
lowing research to leverage powerful new methods, efficiently train
multi-task models, and converge on improving the one technique.

Music is sometimes conceived of as language without seman-
tics; one cannot converse with music about concepts, yet it displays
syntax and organisation at the levels of rhythm and harmony. There-
fore, one ought to be able to consider its translation. As a sentence
may be embellished or summarised, the same notes may be per-
formed by an ensemble or a single instrument, differentiated by the
number of frequencies superposed in the mix. Translation in this

Fig. 1. Framing prominent instrumental audio tasks as translation.
Illustrated with spectrograms; frequencies can be distilled in opera-
tions to the left, or added, to the right.

limited sense becomes the act of adding or stripping away frequen-
cies (Figure 1). On one extreme, pitch-tracking can be thought of as
distilling the fundamental frequency, F0. Its opposite, synthesis, is
therefore taking F0 and introducing the rest of the spectrum. Source-
separation of polyphonic audio becomes detecting the frequencies
made by a single instrument and ignoring the rest, whereas super-
resolution restores upper frequencies to low-fidelity recordings.

Given the proven utility of the time-frequency spectrogram in
a wide range of audio tasks, the framing of these tasks as a trans-
lation problem, the emergence of image translation methods, and
improved spectrogram reconstruction techniques, this paper seeks to
develop a single model framework capable of each task, and their
combination. Our pipeline consists of a conditional GAN that learns
translations between mel-scaled spectrograms, which in turn, con-
ditions a WaveNet synthesiser to reconstruct the final audio. This
contributes a generalisable and end-to-end supervisable architecture
that displays both competitive performance across a wide applica-
tion, and further gains from joint multi-task learning.1

2. MODELS

2.1. Generative Adversarial Networks and pix2pix

Generative adversarial networks (GANs) [7] are frameworks consist-
ing of generator and discriminator (G andD) subnetworks that learn
via competition. D(y; θd) seeks to maximise the probability of cor-
rectly discerning whether y was taken from real data x∼pdata(x) or
generated, counterfeit data. Simultaneously, G(z; θg) learns to map
input noise z∼pz(z) to x in order to produce increasingly convinc-
ing imitations. G is never shown the data it aims to generate, instead
it relies solely on D’s output as part of its own loss. The parame-
ters θg are trained to minimise log (1−D(G(z)), while parameters
θd learn to maximise logD(x) + log (1−D(G(z)). Due to the
codependence of the networks, the training scheme involves alter-
nating their update phases. pix2pix (cGAN) [8] extends the frame-
work by conditioning both subnetworks on images; G learns to map
from noise to translation, conditioned on an observation, while D
compares the same observation with a translation of unknown ori-

1Examples at https://svenshade.github.io/GAN-WN/.
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Fig. 2. Illustration of cGAN (left) and its U-Net generator (right).

gin (ground truth or imitation). This model also incorporates L1
distance to stabilise training via objective feedback. In pix2pix, D
is a convolutional classifier which assumes independence between
pixels of separate patches, allowing for fewer parameters and han-
dling images of different sizes. G resembles a U-Net [9] autoencoder
with skip connections between mirrored layers that circumvent the
information bottleneck at the centre of the network by opening up
other means for decoder layers to access low-level information (e.g.
edges) that might be near identical with their paired encoder layers
(see Figure 2). This feature is a strength of pix2pix, as there are
many image translation tasks, including our own, that require some
elements of the original composition to remain unchanged.

This work further demonstrates that loss functions needn’t be
explicitly specified by the researcher between tasks, asD effectively
learns a bespoke loss. It therefore presents a flexible method that
can be applied to a number of image translation problems, which
our research aims to exploit in the spectrogram space.

2.2. WaveNet and Tacotron 2

A key hurdle presents itself when modelling raw audio. Capturing
high-level image features (e.g. a cat) might require deeper neurons
to be receptive to say, 200 pixels squared. A high-level audio feature
(e.g. a bowed string) may be sustained over a second, increasing the
receptive field requirement to tens of thousands of timesteps, even
for a medium-fidelity signal. Although this is possible with large
kernel sizes and strides, it doesn’t present a way to overcome the
second hurdle, which is to respect the sequential nature of audio.
WaveNets [10] make use of causal, dilated convolutional layers. By
both forcing connections to feed forward into later timesteps, and
progressively dilating hidden layers, the resultant network can be
visualised as a binary tree that slides along the data, enabling the re-
ceptive field to increase exponentially with layer depth. In this way,
entire waveforms can be generated autoregressively; by classifying
one timestep at a time given the existing series.

In a follow-up paper [3], Tacotron 2 is described as a fully neu-
ral architecture for text-to-speech, making use of WaveNet as a syn-
thesiser conditioned on features generated by the original Tacotron
network, replacing the Griffin-Lim spectrogram-to-audio algorithm.
Not only does this make the system supervisable end-to-end, it also
allows compressed representations such as mel-spectrograms to be
reconstructed directly, reducing network complexity.

3. THE GAN-WN ARCHITECTURE FOR VARIOUS
INSTRUMENTAL AUDIO TASKS

3.1. Data and Representation

We chose to exclusively model the solo violin for three reasons. One,
forming multiple ‘deep’ models for each task is infeasible with our
compute resources. Two, the violin is notoriously hard to model

due to its expressive range [11], serving as an effective proof-of-
concept for many other instruments. Three, we expect it to facili-
tate efficient joint modelling of tasks. For pitch-tracking and syn-
thesis tasks, we created paired multi-sine-wave (fundamental + first
5 harmonics) and violin audio tracks using chromatic scales, soft-
ware instruments, and data from the Bach10 dataset [12]. For super-
resolution, we downsampled over 12 hours of live violin record-
ings [13, 14, 15, 16] in order to generate the paired low-fidelity
track. Finally, for source-separation we used multi-track recordings
from the Bach10, Freischutz, and Phenicx-anechoic datasets [12, 17,
18], and created our own synthetic multi-track data using MIDI files
of Bach’s Four Orchestral Suites2, played through software instru-
ments. We further tailored MIDI files by reducing the complexity of
polyphonic phrases in order to clarify connection to F0, and keeping
instrument sources to under five. We chose to model at a literature-
standard sample rate of 16 kHz, as the spectrum becomes increas-
ingly sparse in upper frequencies captured by higher rates, mean-
ing computationally-expensive diminishing returns. Once we had fi-
nalised our audio tracks, they were compressed and normalised, seg-
mented into chunks, and processed via the short-time Fourier trans-
form (STFT) [4]. STFT parameters (hop size of 49 samples, and
window size of 1024 and length of 640 samples) were co-determined
with chunk duration (1550ms), to settle on a representation that dis-
played clear frequency lines when viewed as an image at the target
resolution of 256x256 pixels. Finally, we mel-scaled all data to effi-
ciently model for human frequency perception, and reclaim memory
for larger kernels and layers.

3.2. Translation

Our method extends the pix2pix method presented in [8] (using the
official public implementation) in order to fit a translation model to
each of our datasets of paired spectrograms. In each case, once the
generator,G is properly trained, testing becomes a matter of convert-
ing audio of arbitrary length to its mel-spectrogram representation
and applying G convolutionally. In this domain, pitch-tracking can
be thought of as semantic segmentation in the same way that a satel-
lite image might be translated into a road map. Source-separation
becomes a denoising problem, relaying patterns related to the sig-
nal and ignoring others. Super-resolution is analogous to inpainting,
where the first half of the spectrogram — the low frequencies — is
used to fill in the blank half. Finally, synthesis becomes a style trans-
fer problem, where the model has extracted the overall harmonic
‘style’ of an instrument, and seeks to apply this to sine-waves serv-
ing as a harmonic blueprint. After a preliminary grid search over
hyperparameters, we adopted a kernel size of 8x8 for both G and D
networks and optimised for least-squares loss.

3.3. Reconstruction

We present three spectrogram reconstruction methods. The first in-
volves naively rescaling frequencies before processing with Griffin-
Lim, which displays noticeable artefacts and a lack of detail in higher
frequencies. The second method improves on this by inserting a sec-
ondary cGAN process after rescaling, trained on ground-truth and
mel-scaled-rescaled data, to further restore the linear spectrograms.
The third method makes use of the WaveNet architecture to cir-
cumvent both lossy rescaling and Griffin-Lim reconstruction, locally
conditioned on spectrograms to guide generation. We trained one
WaveNet model on the task that had the most available data (super-
resolution). By partitioning into equal test and train (∼6 hours of au-

2http://www.jsbach.net/midi/
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Fig. 3. The GAN-WN architecture.

dio each), our cGAN produced 6 hours-worth of spectrograms from
unseen data, which were then paired with their ground truth audio in
order to train WaveNet. In doing so, we train GAN-WN as a cascade
architecture, making the reconstruction stage more robust to trans-
lation errors. We illustrate the GAN-WN architecture in Figure 3.
Memory resources for WaveNet limited training instances to ∼30k
steps, or 1.88s in duration, which perfectly suited the 1.55s chunk
size represented by our datasets. Noticing that our first WaveNet
over-emphasised harmonics, we implemented a technique to fur-
ther guide audio called teacher-weighted generation, which makes
use of the original, low-fidelity signal being restored, by first in-
terpolating it to the target sample rate, and taking a weighted aver-
age between each timestep generated by the network and the cor-
responding interpolated timestep, by a set factor. That prediction,
f−1((f − 1)xi + yi), where xi is the timestep from the interpo-
lated signal, yi is WaveNet’s current prediction, and f is our weight
factor, is fed back into the network to discourage errors from being
propagated. We found that a factor of 20 was sufficient to generate
audio that was less prone to squealing, at the cost of some detail.

4. EXPERIMENTS AND RESULTS

After fitting a dedicated cGAN model to each of the four tasks’
datasets, we evaluate on the bases of spectrogram distance as well as
human audition. For measuring the former, we report both percent-
age difference (normalised L1 distance) as well as structural similar-
ity (SSIM), which aims to independently consider structural infor-
mation from illumination [19]. For the latter, we hosted an online,
APE-style audition test [20] for twenty students and colleagues from
the authors’ personal networks. This evaluation was designed to fa-
cilitate comparison between multiple, time-aligned audio clips, by
presenting the participant with a series of 20 horizontal scales, fea-
turing sets of 4-6 audio clips corresponding to the same 10-second
test instance as processed by the methods. Clip positions and labels
were randomised at test time to avoid bias. Participants were tasked
with auditioning each set and assessing each clip against a continu-
ous Likert scale, across bad, poor, fair, good, and excellent markers.
This format ensured that for each instance, all of the methods were
compared with each other, and with finer resolution. The test was
built using the Web Audio Evaluation Tool (WAET) [21].

4.1. Harmonic Distillation: Pitch-Tracking and Source-Separation

The ubiquitous baseline for pitch-tracking, pYIN [22], performed
poorly over our data due to several octave errors. This prompted us
to use the more sophisticated audio-to-MIDI function in the commer-
cial digital audio workstation, Ableton Live 9. Unlike linearly-scaled
spectrograms, training the model on the mel-scale ensures that the
columns (filterbanks) closely correlate with musical pitch; under-
standing cGAN’s pitch predictions was a simple matter of record-
ing the filterbank number of the brightest pixel in each row (Figure
4). Over our test set, we tallied correctly predicted notes from both

Fig. 4. The pitch quantisation process, proceeding left to right.

Method Correct Total Precision Mean error
Ableton 109 / 130 157 69.43% 32.69
cGAN 119 / 130 122 97.54% 17.35

Table 1. Pitch-tracking results, including correct/total notes found.

our method and the baseline, but to credit notes that were mistimed
yet otherwise pitched properly, and investigate alignment of note
onsets and offsets, we also tallied incorrectly classified timesteps
(pixel rows), which we report as mean error per spectrogram (Ta-
ble 1). Each timestep was considered incorrect if it was neither in,
nor neighbouring, the correct row.

For source-separation, we used both blind and supervised base-
lines; the non-negative matrix factorisation (NMF) method imple-
mented in the Flexible Audio Source Separation Toolbox [23], and
the convolutional neural network-based method (CNN) detailed in
[24]. The latter technique is chosen due to the high similarity of
training data it shares with our method (Bach10 and pre-recorded vi-
olin samples), providing a more challenging baseline. The test piece
— a Bach piano and violin duet — was chosen to better test how
the methods fare on real-world data; neither the piano, music, nor
number of sources, is featured in the training data for either method.
See Table 2 for spectrogram results. For the listening tests in Figure
5, the prompt: “Overall Success: Removing Piano, Keeping Violin”
was given to participants to rate against.

4.2. Harmonic Addition: Super-Resolution and Synthesis

For super-resolution, as in [25] we used interpolative baselines (lin-
ear, cubic b-spline) [26], which were compared against our pipeline
using all three reconstruction methods (Table 2). While [25] itself
provides a recent, informed technique, interpolation is sufficient for
proof-of-concept, keeping to our aim of investigating the generality
of our method, and mitigating the cost of training another baseline.
We tested over solo violin audio from a different recording envi-
ronment, downsampled to 4 kHz in order to perform 4x upsampling
back to 16 kHz. We include the outcomes of the two super-resolution
listening tests in Figure 5; participants were given the prompt “Over-
all Quality”. While pixel-wise loss is a useful metric for distillation
tasks, it becomes decreasingly useful the more we introduce new
frequencies, where the real aim is to fill in sound that is believable,
instead of meeting ground truth. We chose to evaluate synthesis by
ablation; we remove D and train a baseline autoencoder on L1 dis-
tance alone. We train both methods over the synthesis dataset, this

Source-Separation Super-Resolution
cGAN NMF CNN cGAN Cubic Linear

% error 4.21 4.96 5.24 1.65 2.42 2.63
SSIM 0.52 0.50 0.47 0.68 0.53 0.51

Table 2. Spectrogram performance over source-separation and
super-resolution test sets.
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Fig. 5. Listening test plots. GAN-V refers to naive reconstruction,
while GAN-S & S2 use 1 & 2 secondary cGAN stages respectively.

Fig. 6. Comparing synthesis models. Note the realistic trailing vi-
brato waves reproduced (encircled).

time making use of the aforementioned multi-sine-wave (harmon-
ics) track; the single sine-wave track stalled training due to its spar-
sity. We also use our synthesis model in conjunction with the super-
resolution model to avoid redundancy; we train the former on the
simpler task of translating harmonics to 4 kHz violin audio, and then
leverage the latter, trained on far more data, to inpaint the rest (Fig-
ure 6). During training, the capabilities of each model became clear,
with the autoencoder requiring three times as many epochs as the
cGAN model before reproducing clear noise + harmonics patterns.

4.3. Jointly Learning to Track, Separate, and Enhance

As stated earlier, there ought to be potential for significant trans-
ferable learning, with the acquisition and refinement of an instru-
ment’s audio profile facilitating multiple tasks. To pursue this, we
formed a combined dataset of equal parts of our original sets, and
trained a joint model by increasing the input channels of our cGAN
to three (we collapsed synthesis and super-resolution to the one task,
enhancement). We chose to compare this model against the dedi-
cated source-separation model, given its complexity. We believe our
results encourage such an approach (Figure 7), confirming our ex-
pectation that kernels not only ought to be shared efficiently between
tasks, but also cross-benefit, as shown by the increased performance
our joint model achieved, in fewer iterations, despite only processing
the same amount of task-specific data as the dedicated model.

4.4. Discussion

We observe promising results; the models outperformed baselines,
and subjective tests displayed clear preference for our method. For
pitch-tracking, a common error made by Ableton was incorrectly
timed note onsets (difficult for continuous-excitation instruments);
in its defence, our method was trained to handle solo violin audio,
and the metric we used only registered one correct note per ground
truth note, which penalised Ableton’s subdivided notes. Across
distillation tasks, cGAN showed greater precision in the frequencies
it detected, sometimes trading off detail in the high frequencies.
Further tuning of our loss function could help approach CNN’s
accuracy in that regard, although CNN underperformed overall,
conceivably due to it being trained to separate a set four sources.
We also tested Signal-to-Distortion and Source-to-Interference ra-
tios (SDR, SIR) for source-separation, in order to better quantify

Fig. 7. Comparing joint vs. dedicated models.

Fig. 8. Examples from our reconstructive processes on super-
resolution. Whistling artifacts (encircled) introduced by WaveNet,
and note the thresholding degradation from descaling & Griffin-Lim.

performance. However, we noticed a severe drop in SIR (from
25dB, down to 16dB) after our second cGAN restoration, as well as
non-competitive SDR scores. Curiously, this is not consistent with
the results of the subjective listening test, and we hypothesise that
such success is due to the generative nature of the GAN process; it
is liable to fill in statistically-consistent detail, even if such detail
is not present in the signal. This marked difference in the way our
technique generates audio compared to baselines makes it tricky for
objective comparison, and we encourage future research in percep-
tual metrics for GAN-based MIR systems. This finding reveals a
weakness in our technique as compared to specialised approaches,
as source-separation arguably has a ground-truth that needs to be
uncovered. To re-state; our approach is not to overtake state-of-the-
art, but to explore and give credence to the efficient research strategy
of investing in general techniques that model with less redundancy
in training, since any data might increase performance in all tasks.

For addition tasks, sparsity issues (mapping too few frequencies
to complex spectra) were aided by mel-scaling. WaveNet was able to
model noise components better than Griffin-Lim, yet was let down
by artefacts; we hypothesise this is analogous to positive feedback in
language models, where a particular phrase predictably sparks oth-
ers, propagating error. This was alleviated by teacher-weighted gen-
eration, at the cost of some detail in the upper spectrum. See Figure 8
for a comparison of spectrograms output by the different processes.
Regarding algorithm performance, cGAN translation was more than
an order of magnitude faster than the reconstruction stage, at ∼19x
realtime. Our implementation of WaveNet3 was slower, only able to
produce ∼50 raw audio samples a second. Griffin-Lim reconstruc-
tion was much faster (∼0.78x realtime), allowing ∼0.5x realtime
speed to complete any task using the cGAN-S method overall, and
a ∼4x speedup compared to source-separation using our NMF base-
line. All models were trained using an NVIDIA GTX 1080ti GPU.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have demonstrated how recent innovations in
speech and image processing can impact diverse MIR problems,
contributing to their unification in theory and practice. Our ap-
proach, GAN-WN, is a general, supervisable method that can be
jointly-trained, retaining competitive performance across most tasks.
By making use of STFT phase data, lossy spectrogram transforma-
tions might become redundant in future iterations, reducing arte-
facts. Finally, adding expressive control of synthesis, and pursuing
multi-instrument modelling, are both promising extensions.

3Based largely on github.com/r9y9/wavenet_vocoder.
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