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ABSTRACT
We present a spatial matrix filtering framework for noise reduction
in the spherical harmonics (ambisonics) domain (SHD), which out-
puts an SHD signal vector rather than one signal as commonly pro-
vided by beamforming approaches. We discuss two spatial matrix
filtering methods: A multi-beamformer method using known prop-
agation vectors of the desired signal components and a method pre-
serving the directional information in an optimal way. Parametric
multi-channel Wiener filter solutions for both methods are discussed
and a performance evaluation is conducted. It is shown that the di-
rection preserving method preserves the spatial distribution of the
desired sounds and residual noise at the cost of less noise reduction
and higher signal distortion when compared to the multi-beamformer
approach. Moreover, no spatial parameters have to be estimated.

Index Terms— Spatial filtering, ambisonics, spherical harmon-
ics, noise reduction

1. INTRODUCTION

Microphone arrays can be used to capture a desired sound source
while suppressing undesired sources in the recorded sound field. A
common approach is to apply a beamformer to the microphone sig-
nals and extract an estimate of the desired sound which, in this case,
results in a single-channel signal. To extract several sources from
the array data, one can apply several beamformers [1]. Neverthe-
less, the spatial information of the original sound field is lost after
beamforming.

In [2] an informed beamformer is derived which yields a specific
spatial response while suppressing noise using direction-of-arrival
(DOA) estimates of the desired sources. One might use this tech-
nique for spatial sound reproduction by applying several such beam-
formers, each with the desired response of a loudspeaker [2]. How-
ever, the beamformer yields the desired spatial response only for the
desired source directions. Therefore, the spatial distribution of the
residual noise cannot be controlled. Moreover, instantaneous DOAs
have to be estimated which is often difficult, especially for 3D sce-
narios. Another approach, developed in the context of binaural pro-
cessing, is to calculate two beamformers for the left and right ear to
directly generate a filtered binaural signal such that the binaural cues
are preserved [3, 4, 5]. In a recent work, the desired signal, which is
assumed to be a single directional source, is first extracted using an
adaptive beamformer and then spatially reconstructed by estimating
the transfer function from the source to the array [6].

The aforementioned methods can be formulated in the spheri-
cal harmonics domain (SHD) which has many benefits over other
sound field representations such as scalability, i.e., the spatial res-
olution scales with the number of spherical harmonic coefficients
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used, and implementation of rotations (e.g., for head tracking) with
matrix multiplications. The SHD is an efficient representation of
sound fields on the surface of a sphere, which can be captured using
spherical microphone arrays.

As discussed before, the spatial information of the sound field is
lost after beamforming or only captured by a few parameters which
might be difficult to estimate. To preserve the spatial information
of the sound field we propose to use a filter matrix which extracts
a signal vector in the same spatial domain as the input signal. Two
approaches are discussed. The first approach uses multiple beam-
formers and knowledge of the number of directional sources and
their propagation vectors. The second approach uses a special di-
rection preserving form of the filter matrix, which can be related to
the ambisonics directional-loudness modification discussed in [7].

In Section 2, we introduce the spherical harmonics transform
and mode-strength compensation. In Section 3, we discuss the pro-
posed spatial matrix filtering approaches. In Section 4, the corre-
sponding solutions of the parametric multi-channel Wiener filter ma-
trix are derived. In Section 5, the performance of these methods is
evaluated.

2. SPHERICAL HARMONICS TRANSFORM

The spherical harmonics transform (SHT) is used to efficiently rep-
resent signals captured on a 2-sphere S2 by a countable set of SHD
coefficients of order l = 0, ..., L and modes m = −l, ..., l, where
the spatial resolution scales with the maximum order L. Let a solid
angle be denoted by Ω = (θ, φ) with elevation θ ∈ [0, π] and az-
imuth φ ∈ [−π, π). The SHT of a function f : S2 → C is defined
as [8, 9]:

flm :=

∫
S2

f(Ω)Y ∗lm(Ω) dΩ , (1)

where ∗ denotes the complex conjugate, dΩ = sin θdθdφ and
Ylm(Ω) is the spherical harmonic (SH) of order l and mode m.
The SHs constitute an orthonormal basis for functions on S2. For
L → ∞ this basis is complete. The number of SHD coefficients up
to order L is (L + 1)2. If we sample the sound-field with P micro-
phones on a sphere at directions Ω1, ..., ΩP , one can approximate
the SHT (1) by

flm ≈
P∑
p=1

qpf(Ωp)Y
∗
lm(Ωp) , (2)

where the sampling weights qp are chosen such that

P∑
p=1

qpYlm(Ωp)Y
∗
l′m′(Ωp) = δll′δmm′ (3)

is fulfilled [8, 9]. For uniform spatial sampling, one yields qp =
4π
P

[10] if P ≥ (L+ 1)2. The SHD coefficients of a unit-amplitude
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plane-wave with DOA ΩPW are given by [11]

fPW,lm = bl(κr)Y
∗
lm(ΩPW) , (4)

where κ denotes the wavenumber and r the radius of the 2-sphere.
The function bl is called the mode strength of order l and depends on
the spherical array type. To compensate for the array-dependency
of the SHD signals one can divide the signals by the respective
mode strengths [11], yielding mode-strength compensated SHD
(MC-SHD) signals, which are also referred to as ambisonic signals.
In what follows we use a vector notion for the SHs

y(Ω) := [Y00(Ω), Y1−1(Ω), ..., YLL(Ω)]T (5)

and MC-SHD signals

x := [X00, X1−1, ..., XLL]T , (6)

where (·)T denotes the transpose and Xlm the lm’th coefficient of
an MC-SHD signal. Moreover, we assume that the signals captured
by the P microphones are transformed to the short-time-Fourier-
transform (STFT) domain, where we denote time frame and fre-
quency bin indices by n and k, before the SHT. STFT indices are
omitted for brevity when possible.

3. SPATIAL MATRIX FILTERING

To extract a desired signal S from a multi-channel signal vector x,
one usually applies a beamformer w to x resulting in a mono signal

Z = wHx , (7)

where (·)H denotes the conjugate transpose, which is the estimate
of S. This method has been extensively studied in literature, even
in the SHD [9], and is used for e.g., denoising and dereverberation.
However, as only one signal is extracted from x, the spatial informa-
tion encoded in x is lost. To maintain this information we propose
to extract an MC-SHD signal vector z by applying a spatial filter
matrix W to x in the MC-SHD, such that

z = Wx . (8)

We, therefore, apply an ambisonic transformation instead of a beam-
former. In the following sections, we derive explicit forms of the
spatial filter matrix using two different approaches.

3.1. Multi-Beamformer Approach

Let us denote the desired MC-SHD signal vector consisting of J
sources Šj with propagation vectors dj , j = 1, ..., J by

s =
J∑
j=1

Šjdj =: Dš , (9)

where D = [d1, ...,dJ ] and š = [Š1, ..., ŠJ ]T . A source extraction
approach is to apply J beamformers wj to the signal x which yield
estimates Zj for the J signals Sj :

ž := [Ž1, ..., ŽJ ]T = [w1, ...,wJ ]Hx =: W̌x (10)

A commonly used beamformer is the linearly-constrained-minimum-
variance (LCMV) beamformer [12]. Given the signal model in (9)
and estimates of the separate sources ž the estimate of s is

z = Dž = DW̌x . (11)

Therefore, the corresponding filter matrix is W = DW̌. This ap-
proach is well suitable if the propagation vectors are available or can
be estimated. Nevertheless, all signal components which can not
be modelled with (9) such as diffuse sound will not maintain their
spatial characteristics after filtering.

3.2. Direction Preserving Approach

To ensure that the spatial information of x is maintained, we want
that applying W to a plane-wave from an arbitrary direction Ω the
plane-wave maintains its direction. This yields the following condi-
tion in the MC-SHD:

Wy∗(Ω) = α(Ω)y∗(Ω) ∀Ω ∈ S2 , (12)

where α(Ω) is a directional gain function. For order limited SHs this
condition can only be fulfilled for a finite number of directions Ω.
Nevertheless, we can find the optimal solution for W by minimizing
the following cost function:

JDP(W) :=

∫
S2

‖Wy∗(Ω)− α(Ω)y∗(Ω)‖2 dΩ , (13)

where ‖ · ‖ denotes the `2-norm. The optimal solution is

W =

∫
S2

α(Ω)y∗(Ω)yT (Ω) dΩ . (14)

Comparing this solution with the solution provided in [7] we can see
that this is precisely the directional-loudness ambisonic transforma-
tion matrix but for order truncated SHs. To avoid the integration, we
can make use of the fact that the tensor product of SH vectors up to
orderL can be expressed as a weighted sum of (2L+1)2 basis matri-
ces, which are related to the Clebsch-Gordan coefficients [13]. The
weights are the SHs up to order 2L. Therefore, if the matrix consist-
ing of SHs up to order 2L sampled at Q ≥ (2L+ 1)2 directions Ω1,
... ΩQ is of maximum rank, the matrices y∗(Ωq)y

T (Ωq) with q =
1, ..., Q provide an (over-)complete basis for {y∗(Ω)yT (Ω)|Ω ∈
S2} and (14) can be replaced by

W =

Q∑
q=1

qqαqy
∗(Ωq)y

T (Ωq) (15)

with discrete directional gains αq and sampling weights qq corre-
sponding to the sampling scheme.

4. PARAMETRIC MULTICHANNEL WIENER FILTER
MATRIX

Suppose the signal x consists of a desired signal s and an unde-
sired/noise signal v, i.e.,

x = s + v , (16)

which are assumed to be uncorrelated. We search for an estimate z =
Wx of s. The parametric multichannel Wiener filter (PMWF) [14,
15] solution for the filter matrix W is derived by minimizing the
following cost function:

JPMWF(W) = E{‖Ws− s‖2}+ µE{‖Wv‖2} , (17)

where E{·} denotes the expectation operator. The first term of
JPMWF is a measure for the desired signal distortion, the second
term a measure for noise reduction and the parameter µ adjusts the
trade-off between these two measures.
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4.1. Multi-Beamformer Solution

Inserting (9) and W = DW̌ in the cost function (17) we get:

JPMWF(W) = E
{

(W̌Dš− š)HDHD(W̌Dš− š)
}

+ µE
{

(W̌v)HDHD(W̌v)
}
. (18)

Minimizing w.r.t. W̌H and assuming that DHD is invertible yields
the following optimal solution:

W̌ = ΦšD
H
(
DΦšD

H + µΦv

)−1

, (19)

where Φ(·) := E{(·)(·)H} denotes the power spectral density
(PSD) matrix of the respective signal vector. The same solution for
µ = 1 has been derived in [1] and it is shown that (19) can be de-
composed into J LCMV beamformers wLCMV,j and a multi-source
(parametric) Wiener postfilter matrix WWPF. A lower bound of the
Wiener postfilters can be implemented by further decomposing the
non-diagonal WWPF (see [1] for more details). The filter matrix is
derived using W = DW̌.

4.2. Direction Preserving Solution

For the derivation of the direction preserving PMWF matrix it is
useful to define the following quantities:

Φ(̃·),q′q := yT (Ωq′)Φ(·)y
∗(Ωq)

∆̃qq′ := q∗qqq′y
T (Ωq)y

∗(Ωq′) . (20)

We insert the optimum direction preserving form of W (15) in the
cost function (17) and minimize it w.r.t. α∗q for q = 1, ..., Q. This
yields the following set of equations:

Q∑
q′=1

∆̃qq′(Φs̃,q′q + µΦṽ,q′q)αq′ =

Q∑
q′=1

∆̃qq′Φs̃,q′q . (21)

Solving this set of equations for the directional gains αq requires
a matrix inversion per time and frequency bin (recall that time-
frame and frequency bin indices are omitted for brevity). To reduce
the computational complexity, we can make use of the fact that
yT (Ω)y∗(Ω′) has a maximum at Ω = Ω′ and decays similarly to
a sinc-function for increasing angular distance [8]. Therefore, we
propose to neglect the off-diagonal contributions of ∆̃qq′ in (21).
Using this approximation, one can derive

αq =
Φs̃,qq

Φs̃,qq + µΦṽ,qq
, (22)

which has the form of a single-channel parametric Wiener filter. A
lower bound can easily be implemented by lower-bounding the αq .
Finally, the filter matrix W is derived by inserting (22) into (15).

4.3. Desired Signal PSD Estimation

Given an estimate of the noise PSD matrix Φv, the signal PSDs
Φš,jj for the multi-beamformer approach and Φs̃,qq for the direction
preserving approach can be recursively estimated using the decision-
directed method [16]. This yields the following update equations:

Φš,jj(n, k) = β|Žj(n− 1, k)|2

+ (1− β)max
(
|ZLCMV,j(n, k)|2 −Ψv,jj(n, k), 0

)
,

Φs̃,qq(n, k) = β|Z̃q(n− 1, k)|2

+ (1− β)max
(
|X̃q(n, k)|2 − Φṽ,qq(n, k), 0

)
(23)

for j = 1, ..., J and q = 1, ..., Q, where we have defined ZLCMV,j =

wH
LCMV,jx, Ψv = (DHΦ−1

v D)−1, X̃q = yT (Ωq)x and Z̃q =

αqX̃q . The parameter β ∈ [0, 1] is a recursive smoothing parameter.

5. EVALUATION

To compare the noise reduction performance of the proposed matrix
spatial filters, we apply both approaches to synthesized sound fields
with two directional sources and diffuse noise.

5.1. Setup

Two different scenarios (Sc1 and Sc2) were examined:
Sc1: Two english speech files, 1 male and 1 female, of 20 seconds
length, were placed at Ωs1 = [75◦, 70◦] and Ωs2 = [115◦,−60◦].
Sc2: 100 sound fields with closely spaced directional sources were
generated using the following procedure: One male and 1 female
speech file are randomly selected from a set of 10 male and 10 female
english speech files of 5 seconds length. The directions Ωs1 and Ωs2
are randomly generated such that ∠(Ωs1 ,Ωs2) ≤ 20◦.

All speech files had a sampling frequency of fs = 16 kHz
and were transformed in the STFT domain using a square-root-Hann
window with 512 samples (32 ms) length, 50% overlap (16 ms) and
a discrete Fourier transform size of 1024. Let us denote these STFT
signals with S1(n, k) and S2(n, k). Assuming no reverberation,
the MC-SHD plane-wave signals were generated by multiplying the
single-channel STFT signals with SH vectors at source directions
Ωs1 and Ωs2 , yielding

s(n, k) = S1(n, k)y∗(Ωs1) + S2(n, k)y∗(Ωs2) . (24)

The diffuse noise signal vector v was calculated by almost uniformly
sampling the sphere at Qv = 50 positions and forming a random
superposition of the corresponding SH vectors at each n and k:

v(n, k) =

√
σ2
v

Qv

Qv∑
qv=1

Rqv (n, k)y∗(Ωqv ) , (25)

where the Rqv are complex white Gaussian noise processes of
unit variance in the STFT domain and σ2

v is the noise variance.
Almost uniform sampling schemes were derived using a repelling-
charged-particles-on-sphere model [17]. Assuming perfect uniform
sampling, the noise PSD matrix is given by Φv = (σ2

v/4π)I, where
I is the identity matrix. The noise variance σ2

v is calculated from a
chosen input signal-to-noise ratio iSNR and the speech variance σ2

s ,
which is derived from the speech signals S1(n, k) and S2(n, k) as
follows:

σ2
s = mean

n∈N
E(n) with E(n) = mean

k

(
2∑
j=1

|Sj(n, k)|2
)

(26)

and

N :=
{
n ∈ {1, ..., N} | E(n) > 0.01 ·max

n
(E(n))

}
. (27)

For the direction preserving PMWF, the sphere was sampled almost
uniformly at Q = (2L+ 1)2 directions. For the multi-beamforming
approach, we incorporated knowledge of Ωs1 and Ωs2 in the algo-
rithm. Therefore, for our non-reverberant scenario, the propagation
vectors d1 and d2 are given by dj =

√
4πy∗(Ωsj ) for j = 1, 2.

We chose a maximum SHD order of L = 3, iSNR = 3 dB, a lower
bound for the PMWFs of 0.1, µ = 1 and β = 0.8 for the decision-
directed PSD estimation.
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5.2. Performance Measures

Let us first denote the residual noise by vres := Wv and the resid-
ual desired sound by sres := Ws. We then define the mean noise
reduction (NR) as follows:

NR := 10 log10

 mean
n,k
‖v(n, k)‖2

mean
n,k
‖vres(n, k)‖2

 . (28)

Next, we define the mean desired signal distortion (SD):

SD := 10 log10

mean
n,k
‖sres(n, k)− s(n, k)‖2

mean
n,k
‖s(n, k)‖2

 . (29)

Finally, we are interested in the spatial distribution of the residual
noise power:

Pvres (Ω) := mean
n,k

(
|yT (Ω)vres(n, k)|2

yT (Ω)y∗(Ω)

)
. (30)

To analyse the similarity of the spatial distributions of two MC-SHD
signal vectors x1 and x2, we use the following similarity measure:

σ(x1,x2) :=
2

π
sin−1

( ∑
i Px1(Ωi)Px2(Ωi)√∑

i Px1(Ωi)2
√∑

i Px2(Ωi)2

)
,

(31)
where Px1/2

(Ω) is defined analogous to (30) and the sum goes over
a densely sampled finite subset of S2. The similarity measure takes
values σ(x1,x2) ∈ [0, 1] and can be identified as the angular simi-
larity [18] of the two spatial distributions.

5.3. Results

In Table 1 the NR, SD and similarity results for Sc1 are summarized.
The multi-beamforming method yields higher noise reduction which
is expected as the denoised signal z = Dž is a superposition of two
directional signals. Therefore, apart from the directions Ωs1 and
Ωs2 , the noise is highly suppressed. Nevertheless, the residual noise
power at those directions is actually slightly higher compared to the
direction preserving approach (see Fig. 1). The multi-beamforming
method yields less desired signal distortion, which is probably due
to the fact that, with this approach, noise is already reduced with
distortion-less LCMV beamformers before the Wiener postfilters are
applied.

In Fig. 1 the spatial distribution of the residual noise power for
Sc1 is shown. The direction preserving approach almost completely
preserves the isotropic character of the diffuse noise, while for the
multi-beamforming approach the residual noise is concentrated at
source directions Ωs1 and Ωs2 .

In Fig. 2 the noise reduction is shown as a function of the angular
distance of the two sources (Sc2). With decreasing angular distance,
the multi-beamforming approach yields less noise reduction, while
for the direction preserving approach the noise reduction does not
significantly depend on the angular distance.

Note that for the multi-beamforming approach the source prop-
agation vectors d1, d2 have to be known while for the direction pre-
serving method this information is not used and no spatial properties
of the desired signal s are assumed.

Method NR [dB] SD [dB] σ(vres,v) σ(sres, s)

Multi-Beam. 17.96 −21.24 0.30 1.00
Dir. Pres. 11.66 −17.29 0.93 0.99

Table 1. Mean noise reduction and signal distortion results (Sc1)

Fig. 1. Residual spatial noise power for multi-beamforming (top)
and direction-preserving (bottom) matrix PMWF (Sc1)
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Fig. 2. Noise reduction over angular distance (Sc2)

6. CONCLUSION

To preserve the spatial information of a signal vector in the MC-SHD
after spatial filtering, we proposed to apply a filter matrix instead of a
beamformer to the signal vector which outputs an MC-SHD signal.
We discussed two noise reduction methods using such a filter ma-
trix. The first method uses the multi-source multi-channel Wiener
filter method [1] and the propagation matrix of the desired sources.
The second method was derived by demanding that the filter-matrix
should preserve the directional information of any sound field in an
optimal way. In the evaluation, we have seen that the first method
yields higher noise reduction and less speech distortion, if the propa-
gation vectors are known, but, in contrast to the direction preserving
method, the spatial distribution of the noise is not preserved.
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