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ABSTRACT

This paper proposes a method for the design of flexible Kro-
necker product beamformers based on the decomposition of the s-
teering vector of a physical array as a Kronecker product of steering
vectors of two smaller virtual arrays. With this decomposition, the
global beamforming filter is designed by optimizing the two sub-
beamformers in a cascaded manner, which can offer much flexibility
to control the performance of beamforming or control the compro-
mise between different, conflicted performance measures. In com-
parison with a recently developed method that restricts the number
of microphones of the given physical array to a multiplication of two
integers, each corresponding to the number of sensors of one virtual
array, the approach in this work decomposes the physical array in
such a way that the sensors in the two virtual arrays may share po-
sitions and the number of microphones of the physical array can be
any positive integer. Simulations demonstrate the properties of the
proposed approach.

Index Terms—Microphone arrays, differential beamforming,
Kronecker product, white noise gain, directivity factor.

1. INTRODUCTION

Microphone array beamforming has long been an important research
topic due to its high potential in extracting the acoustic signals of in-
terest and suppressing noise and interference in a wide range of ap-
plications [1–4]. Many interesting techniques have been develope-
d, such as adaptive beamforming [5, 6], superdirective beamform-
ing [7–11], differential beamforming [12–14], etc.

Generally, beamforming uses all microphones in the array in
one step to form the optimal beamforming filter under some crite-
ria [15–18]. In many applications, it is desirable to decompose the
array into sub-arrays, each of which can be optimized individual-
ly [19–23]. Such decomposition usually offers more flexibility to
control the performance of beamforming or control the compromise
between different performance measures [20–23]. Recently, a dif-
ferential Kronecker product beamformer is proposed [24], which de-
composes the original uniform linear microphone array into two vir-
tual uniform linear arrays. By optimizing the two sub-beamformers
individually, the Kronecker product beamformer was demonstrated
to be very flexible to design differential beamformers. One major
limitation with this method is that it requires the number of micro-
phones of the original array to be a multiplication of two integers,
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each corresponding to the number of sensors of one virtual array.
So, the method cannot be applied to linear arrays with prime num-
ber of sensors. This paper extends the work in [24] and develops a
more flexible solution to design differential beamformers with lin-
ear microphone arrays, which can be used in the general case where
the number of microphones in the linear array can be any positive
integer.

The rest of this paper is organized as follows. Section 2 de-
scribes the signal model, problem formulation of beamforming as
well as some measures that are widely used to evaluate beamforming
performance. An approach to beamforming with Kronecker product
is presented in Section 3. Section 4 provides a design example to
validate the developed method. Finally, some important conclusions
are drawn in Section 5.

2. SIGNAL MODEL AND PERFORMANCE MEASURES

Consider a uniform linear microphone array consisting of M om-
nidirectional microphones and the distance between any two neigh-
boring sensors is equal to δ. The direction of the source signal to
the array is parameterized by the azimuth angle θ. In a far-field and
anechoic acoustic environment, the steering vector corresponding to
any direction θ is [25]

d (ω, θ) =
[
1 e−ȷϖ cos θ · · · e−ȷ(M−1)ϖ cos θ

]T
, (1)

where the superscript T is the transpose operator, ȷ is the imaginary
unit with ȷ2 = −1, ϖ = ωδ/c, ω = 2πf is the angular frequency,
f > 0 is the temporal frequency, and c is the speed of sound in the
air, which is typically assumed to be 340 m/s.

Beamforming consists of applying a complex weight vector:

h (ω) =
[
H1(ω) H2(ω) · · · HM (ω)

]T (2)

to the array observation vector to get an estimate of the source sig-
nal. Generally, in the desired look direction θs, the distortionless
constraint is needed, i.e.,

hH (ω)d (ω, θs) = 1, (3)

where the superscript H is the conjugate-transpose operator.
In order to evaluate the designed beampatterns, three perfor-

mance measures, i.e., the beampattern, the white noise gain (WNG),
and the directivity factor (DF), are typically used.

• Beampattern.
The beampattern quantifies how the beamformer respond to a
plane wave impinging on the array from the direction θ. It is
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Fig. 1. Illustration of decomposition of a uniform linear array with
M microphones and an interelement spacing of δ into two virtual
arrays, where the first virtual uniform linear array consists of M1

microphones with an interelement spacing of δ, and the second vir-
tual non-uniform linear array consists of M2 microphones.

defined as

B [h (ω) , θ] = hH (ω)d (ω, θ) (4)

=

M∑
m=1

H∗
m (ω) e−ȷ(m− 1)ϖ cos θ,

where the superscript ∗ denotes complex conjugation.

• The white noise gain (WNG).
The WNG evaluates the sensitivity of the beamformer to
some array imperfections, such as sensor self noise. It is
defined as [2]

W [h (ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)h (ω)
. (5)

• The directivity factor (DF) and directivity index (DI).
The DF, as its name indicates, describes how directive is
the beamformer’s spatial response. It also quantifies how
the beamformer suppressing the spherically isotropic noise.
Mathematically, it is defined as [2]

D [h (ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)Γd (ω)h (ω)
, (6)

where the (i, j)th element of the matrix Γd (ω) is

[Γd (ω)]ij = sinc

(
ωδij
c

)
, (7)

with i, j = 1, 2, . . . ,M , sinc(x) = sinx/x, and δij being
the distance between microphones i and j. The DI is simply
the DF in the logarithmic scale [2], i.e.,

DI [h (ω)] = 10 log10 D [h (ω)] . (8)

3. BEAMFORMING WITH KRONECKER PRODUCT

In [24], a differential Kronecker product beamformer was proposed,
which is based on the Kronecker product decomposition of a physi-
cal linear array into two smaller virtual linear arrays. However, this
method requires that the number of microphones in the global array
be a multiplication of two integers. In this study, we attempt to con-
sider a more general case, where the number of microphones in the
global linear array, M , can be any positive integer.

Let us form the first virtual array as a uniform linear array with
M1 microphones and an interelement spacing of δ; the correspond-
ing steering vector is

d1 (ω, θ) =
[
1 e−ȷϖ cos θ · · · e−ȷ(M1−1)ϖ cos θ

]T
. (9)

To figure out the geometry of the second virtual array, let us first
decompose M as

M = pM1 + q, (10)

where p ≥ 1 and 0 ≤ q ≤ M1 − 1 is a non-negative integer.
If q = 0, the second virtual array is constructed as a uniform

linear array corresponding to a steering vector of

d2 (ω, θ) =
[
1 e−ȷM1ϖ cos θ . . . e−ȷ(p−1)M1ϖ cos θ

]T
.

(11)

If q ̸= 0, the second virtual array can be constructed as a nonuni-
form linear array corresponding to a steering vector of

d2 (ω, θ) =
[
1 e−ȷqϖ cos θ e−ȷ(q+M1)ϖ cos θ

. . . e−ȷ(q+(p−1)M1)ϖ cos θ
]T

. (12)

In both cases, the length of the vector d2 (ω, θ) is ⌈M/M1⌉, with
⌈x⌉ standing for the nearest integer greater than or equal to x. This
implies that the second virtual array consists of M2 = ⌈M/M1⌉
microphones.

For the second virtual array, the distances of microphones to the
reference (the first microphone) can be described as a vector as (see
Fig. 1)[

0 M1δ . . . (p− 1)M1δ
]T

, if q = 0[
0 qδ (M1 + q)δ . . . ((p− 1)M1 + q)δ

]T
, if q ̸= 0.

(13)

The Kronecker product of the steering vectors of these two virtual
arrays is then

d (ω, θ) = d2 (ω, θ)⊗ d1 (ω, θ) , (14)

where ⊗ is the Kronecker product. We refer to the array that corre-
sponds to the steering vector d(ω, θ) as the produced array. It should
be noted that we use d (ω, θ) rather than d (ω, θ) to emphasize that
the produced array is physically but may not be mathematically e-
quivalent to the global array in (1).

Recall that the length of the vector d (ω, θ) corresponding to the
global array is M . If q = 0, we have

M1M2 = M1⌈M/M1⌉ = M1⌈pM1/M1⌉ = M. (15)

In this case, the produced array is equivalent to the global array, i.e.,
d (ω, θ) = d (ω, θ). If q ̸= 0, we have

M1M2 = M1⌈M/M1⌉ = M1⌈(pM1 + q)/M1⌉ > M. (16)

In this case, d (ω, θ) ̸= d (ω, θ). This is because that some micro-
phones may share the same position on the produced array. From
this perspective, the produced array is still equivalent to the global
array.

To see more clearly, a simple example is given as follows. Sup-
pose that we want to design a Kronecker product beamformer with
seven microphones, i.e. M = 7. If we set M1 = 3, then p = 2,
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q = 1, and M2 = 3. The steering vectors of the two virtual arrays
are subsequently computed according to (9) and (12). For simplicity,
we express the positions of microphones in the second and first vir-
tual array as {0, 1, 4} and {0, 1, 2}, respectively. Then, the positions
of the microphones on the global array and the produced array can
be expressed as

global array : {0, 1, 2, 3, 4, 5, 6}
produced array : {0, 1, 4}+ {0, 1, 2}

= {0, 1, 2, 1, 2, 3, 4, 5, 6} . (17)

We use “+” in (17) because the Kronecker product of two exponen-
tial functions means adding their exponential factors together. It is
clearly seen that the 2nd and 4th, 3rd and 5th microphones on the
produced array are overlapped. Therefore, the two arrays (vectors)
are actually equivalent with each other.

We also write the beamforming filter corresponding to the pro-
duced array as a Kronecker product of two filters:

h (ω) = h2 (ω)⊗ h1 (ω) . (18)

Consequently, with the Kronecker product formulation, we get a lin-
ear filter h (ω) of length M1M2. To make this beamforming filter
applicable for the observation signal vector of length M on the glob-
al array, we need to either rearrange the observation signal vector or
the beamforming filter.

Assume the observation signal vector received by the global ar-
ray of length M is

y (ω) =
[
Y1(ω) Y2(ω) · · · YM (ω)

]T
. (19)

If q = 0, the observation signal vector on the produced array is
same as that of the global array, i.e., y (ω) = y (ω). If q ̸= 0,
the observation vector of length M1M2 on the produced array is
constructed as

y (ω) =
[
Y 1(ω) Y 2(ω) · · · Y M1M2(ω)

]T
, (20)

where

Y m (ω) =

{
Ym (ω) , 1 ≤ m ≤ M1

Ym−(M1−q) (ω) , M1 < m ≤ M1M2.
(21)

The beamformer output is then

Z (ω) = h
H
(ω)y (ω) . (22)

Alternately, we can also keep y (ω) unchanged but forming h (ω)
from h (ω)analogously.

The beampattern corresponding to the produced array is [24]

B
[
h (ω) , θ

]
= h

H
(ω)d (ω, θ) (23)

= [h2 (ω)⊗ h1 (ω)]
H [d2 (ω, θ)⊗ d1 (ω, θ)]

=
[
hH
2 (ω)d2 (ω, θ)

] [
hH
1 (ω)d1 (ω, θ)

]
= B2 [h2 (ω) , θ]× B1 [h1 (ω) , θ] ,

where B1 [h1 (ω) , θ] and B2 [h2 (ω) , θ] are the beampatterns cor-
responding to the first and second virtual array, respectively. As
seen, the global beampattern, B

[
h (ω) , θ

]
, can be expressed as the

product of the two beampatterns of the two smaller virtual arrays.
This indicates that one can design the beampattern (or beamformer)
separately as in a cascaded system instead of directly designing the
differential-microphone-array (DMA) beamformer.

With the proposed method, it can be inferred that the WNG is
the product of WNGs of two virtual arrays [24], i.e.,

W
[
h (ω)

]
=

∣∣∣hH
(ω)d (ω, θs)

∣∣∣2
h
H
(ω)h (ω)

= W2 [h2 (ω)]×W1 [h1 (ω)] . (24)

where W2 [h2 (ω)] and W1 [h1 (ω)] denote, respectively, the WNGs
of two virtual arrays.

4. DESIGN EXAMPLE AND EVALUATION

Clearly, the Kronecker product beamforming method can be used to
design any kind of beamformer. In this section, we show an exam-
ple of the proposed Kronecker product beamformer on the design of
some robust DMA beamformers.

We use the first virtual array to design the conventional DMAs.
The N th-order DMA directivity pattern with its main beam pointing
to the direction of 0◦ is given by [1]

BN (θ) =

N∑
n=0

aN,n cosn θ, (25)

where aN,n, n = 0, 1, . . . , N , are real coefficients. The values of
the coefficients aN,n, in (25) determine the different directivity pat-
terns of the N th-order DMA. In the direction of its main beam, i.e.,
θ = 0◦, the directivity pattern should be equal to 1, i.e., B (0◦) = 1.
Therefore, the coefficients aN,n should satisfy

N∑
n=0

aN,n = 1. (26)

The objective of designing differential beamformer is to find an
optimal filter under some criteria so that its beampattern is the same
or as close as possible to the given target directivity pattern. It has
been shown in [1] that a linear DMA can be designed based on the
use of the nulls information in the range of (0, 180◦] on the desired
directivity pattern. Briefly, if we assume that the N th-order directiv-
ity pattern has N nulls which satisfy 0◦ < θN,1 < · · · < θN,N ≤
180◦, the problem of differential beamforming is transformed into
one of solving the following linear system of equations [13]

D (ω)hDMA (ω) = i1, (27)

where

D (ω) =


dH
1 (ω, 0◦)

dH
1 (ω, θN,1)

...
dH
1 (ω, θN,N )

 (28)

is a constraint matrix of size (N+1)×(N+1), and i1 is a vector of
length (N+1), whose first element is 1 and all the other components
are 0.

To design an N th-order linear DMA, we assume that M1 =
N + 1. Then the solution to (27) is

h1 (ω) = hDMA (ω) = D−1 (ω) i1. (29)

For the second virtual array, we choose the delay-and-sum (DS)
beamformer:

h2 (ω) = hDS (ω) =
1

M2
d2 (ω, θ) , (30)
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Fig. 2. Beampatterns of the proposed flexible Kronecker product
beamformer on the design of a robust third-order supercardioid D-
MA: (a) M = 4, f = 1 kHz, (b) M = 4, f = 3 kHz, (c) M = 6,
f = 1 kHz, (d) M = 6, f = 3 kHz, (e) M = 10, f = 1 kHz,
(f) M = 10, f = 3 kHz, (g) M = 13, f = 1 kHz, (h) M = 13,
f = 3 kHz. Conditions: M1 = 4, δ = 1cm.

which has the maximum WNG with the given number of micro-
phones, i.e., W2 [h2 (ω)] = M2. Consequently, a robust DMA filter
can be formed according to (18), i.e.,

hRDMA (ω) = h2 (ω)⊗ h1 (ω) = hDS (ω)⊗ hDMA (ω) , (31)
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Fig. 3. DIs and WNGs of the designed robust third-order super-
cardioid DMA with the proposed method: (a) DIs and (b) WNGs.
Conditions: M1 = 4 and δ = 1cm.

which forms an N th-order DMA and maximizes the WGN at the
same time. In implementation, the observation vector can be re-
arranged according to (20) and the beamforming process is imple-
mented according to (22).

Figure 2 plots the beampatterns of the proposed robust DMA
beamformer on the design of third-order supercardioid (with three
nulls at 97◦, 122◦, and 153◦) for M ∈ {4, 6, 10, 13}, at f = 1 kHz
and 3 kHz, with δ = 1 cm, θs = 0◦. Figure 3 plots the DIs and
WNGs of the designed third-order supercardioid beamformer. It is
clearly seen the WNG increases with the number of microphones.
So, the more the number of microphones are used, the more robust is
the designed beamformer with respect to array imperfections. Clear-
ly, the proposed Kronecker product beamformer can be applied to
the design of robust DMAs.

5. CONCLUSIONS

This paper proposed a flexible Kronecker product beamformer based
on the Kronecker product decomposition of the given physical mi-
crophone array, where the number of microphones in the global array
can be any positive integer. The physical array is decomposed into
two virtual arrays, where the first one is a uniform linear array and
the second may be a uniform or non-uniform linear array depending
on the number of sensors in the global array as well as the number
of sensors in the first virtual array. The resultant array is physically
equivalent to the global array; but beamforming with the two arrays
can be mathematically different due to the geometrical structure of
the second virtual array. With this method, we can design the global
beamforming system in a cascaded manner, which gives flexibility
to control the beamforming performance. We also provided an ex-
ample on the design of a robust DMA with the Kronecker product
beamformer, which demonstrates the potential of the proposed ap-
proach for use in practice.
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