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ABSTRACT

The Time Difference of Arrival (TDoA) of a sound wavefront im-
pinging on a microphone pair carries spatial information about the
source. However, captured speech typically contains dynamic non-
speech interference sources and noise. Therefore, the TDoA esti-
mates fluctuate between speech and interference. Deep Neural Net-
works (DNNs) have been applied for Time-Frequency (TF) mask-
ing for Acoustic Source Localization (ASL) to filter out non-speech
components from a speaker location likelihood function. However,
the type of TF mask for this task is not obvious. Secondly, the DNN
should estimate the TDoA values, but existing solutions estimate the
TF mask instead. To overcome these issues, a direct formulation of
the TF masking as a part of a DNN-based ASL structure is proposed.
Furthermore, the proposed network operates in an online manner,
i.e., producing estimates frame-by-frame. Combined with the use
of recurrent layers it exploits the sequential progression of speaker
related TDoAs. Training with different microphone spacings allows
model re-use for different microphone pair geometries in inference.
Real-data experiments with smartphone recordings of speech in in-
terference demonstrate the network’s generalization capability.

Index Terms— Acoustic Source Localization, Microphone Ar-
rays, Recurrent Neural Networks, Time-Frequency Masking

1. INTRODUCTION

The extraction of spatial information, such as Direction of Arrival
(DoA) or Time Difference of Arrival (TDoA), from a sound source
emitted wavefront is important for several applications from auto-
matic camera steering [1] to beamforming [2]. A traditional ap-
proach to Acoustic Source Localization (ASL) is to estimate the
maximum likelihood of the source position given the multichan-
nel audio. Such a likelihood function is referred to as an acoustic
map [3]. The Steered Response Power (SRP) with phase transform
(SRP-PHAT) is considered as a robust tool for ASL and it builds
the acoustic map as the sum of the Generalized Cross-Correlation
(GCC) with phase transform (GCC-PHAT) values steered with de-
lays related to the propagation model [4].

Several works that utilize Deep Neural Networks (DNNs) in
ASL have appeared in recent years. DOA estimation is treated as
a classification problem in many approaches [5, 6, 7, 8, 9]. The first
end-to-end DNN based ASL method was presented in [10], which
also summarizes recent works. Approaches that utilize DNNs in
conjunction with ASL derived features include [11], which uses a
Convolutional Neural Network (CNN) to provide a DoA estimate
with a Minimum Variance Distortionless Response (MVDR) beam-
former output power values as the input feature. In [12] a Voice Ac-
tivity Detection (VAD) system is used to select frames from which
GCC-PHAT values are obtained as the input features for a CNN to
then further model the speaker position. Approaches to combine
the DNN method with the traditional ASL frameworks include [13],
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where a CNN was used to predict a Time-Frequency (TF) mask to
cancel non-speech values from GCC-PHAT in order to obtain an
acoustic map related to the speech source. Recently, [14] proposed
Recurrent Neural Networks (RNNs) to predict a TF mask, which was
applied to GCC-PHAT, beamforming, and subspace beamforming
methods to increase the accuracy of the speaker’s TDoA estimate.
However, both approaches rely on specifying a target TF mask, and
the type of the suitable mask for such a task is not self-evident.
In [15], TF masking in conjunction with MVDR beamforming to
output a signal for Automatic Speech Recognition (ASR) was pro-
posed. The authors further propose to minimize the ASR error rate
by fine-tuning the TF mask prediction.

This work proposes a two-part DNN structure for the estimation
of TDoA values of a single speaker. The first part learns to produce
a TF mask. The second part then applies the predicted TF mask
to the GCC-PHAT to remove the contribution of non-speech inter-
ference and then estimates the TDoA value related to the speaker’s
position. The proposed DNN structure allows the examination of
different learning strategies for TF masking -based TDoA estimation
to find a suitable masking strategy. In contrast to other TF masking
-based ASL approaches [14, 13], to the knowledge of the authors,
the proposed method is the first that integrates the TF masking into
a DNN that predicts TDoA values. In contrast to offline approaches,
e.g. [14], where a TF mask is predicted at the end of each sentence,
the proposed method operates in an online fashion and produces a
TDoA (and a TF mask) estimate for every input frame. The TDoA
estimation uses regression, which can produce continuous values in
contrast to classification with a discrete set of output values.

The proposed DNN structure utilizes recurrent layers to exploit
the temporal structure of the data. Combined with the online pro-
cessing, this allows the network to follow a source that is in mo-
tion. A single model trained with a range of microphone spacings
allows the utilization of different microphone distances during infer-
ence without model retraining. The method was trained and tested
with static sources using simulated impulse responses and further
tested on a set of dynamic smartphone recordings of speech.

This paper is organized as follows. Section 2 describes the signal
model and TDoA estimation using TF masking. Section 3 presents
the proposed model. Section 4 describes the data, and Section 5
presents the results. Section 6 concludes the paper.

2. SIGNAL MODEL AND TDOA ESTIMATION

The i*" microphone signal is denoted as x;(t,k) in the time-
frequency domain, where k = 0,..., K — 1 is discrete frequency
index and ¢ is processing frame index. In the case of a single
speaker, the signal is modeled as the sum of the reverberated speech
signal sp—o(t, k) in the presence of interference sources sn>o(t, k)
and noise e; (¢, k)

Ii(tv k) = Zn h’iﬂt(t’ k) : s’ﬂ(tz k) + ei(tv k): (D
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where h; »(t, k) is the Room Impulse Response (RIR) between the
nth source and the ¢th microphone, here 7 = 0, 1.

The direct path delay from nth source position p,, to the ith mi-
crophone position m; is 7" = ||m; —px||-c¢ ™, where cis the speed
of sound. While the direct delay is not measurable without knowl-
edge of the source signal, the TDoA between two microphones ¢ and
i’, defined as 7%, = 7' — 77, is measurable. The GCC-PHAT [16]
is a popular method for TDoA estimation

(k) (6 K) o,

K—1 K*lx (

R../ t) = R.., t. k) = e T e A 7
W) = 2 Rl = )
k=0 k=0 ¢

= 2530 cos (Zay(t, k) — Lz (8, k) +rwr), (2)

where j is the imaginary unit, (-)* denotes complex conjugate, T
denotes the pairwise delay value, and wi = 27k/K is the angular
frequency. The TF mask 7,/ (¢, k) can be applied to GCC-PHAT (2)
with multiplication

R (1,6) = Y55 maw (8. k) - R (7,8, k). 3)

The estimate for (masked) TDoA is obtained at time frame ¢
71 (t) = argmax R}y (1, t). @)
3. PROPOSED METHOD

The proposed method uses spatial measurements (GCC-PHAT val-
ues) and magnitude spectrum as DNN input features to estimate
the speaker’s TDoA. The practical implementation uses frequency
bands instead of Discrete Fourier Transform (DFT) resolution to re-
duce memory consumption.

3.1. Input Features

Based on (2), the positive frequencies (wx € [0, ]) of the spectrum
are sufficient for modeling GCC-PHAT values for each frequency
bin k, and are used as input features for a range of values of 7

R,y (7, t,k) = cos (Lx;(t, k) — Lay (t, k) + Twg) . 5)

Here, the mel-frequency resolution spatial input feature R,/ (7,t,b)
was obtained by multiplying R,/ (7,t,k) with a weight matrix
W (k,b) that defines a mel-filterbank, consisting of equally spaced
triangular filters overlapping with adjacent bands (refer e.g. to [17]).

The magnitude spectrum feature (log,q |z (¢,b)|) consisted of
mel-frequency band log-magnitude values averaged over the micro-
phone pair.

3.2. DNN Achitecture for TDoA Estimation Using Masking

The proposed DNN model predicts the TDoA (and optionally also
the TF mask) using the mel-frequency resolution input features i)
GCC-PHAT R(r,t,b) and ii) log-magnitude log,, |z (¢, b)|. To im-
plement this, the proposed DNN uses the input magnitude spectrum
to predict a mel-frequency resolution TF mask 7(t, b) that is multi-
plied with the mel-frequency resolution GCC-PHAT R(r,t,b) (for
each value of 7 separately) before integrating over the frequency
bands to produce the masked GCC-PHAT R (7,t). The masked
GCC-PHAT is then fed as the input of a TDoA estimation sub-
network, which predicts the final TDoA value. The network utilizes
recurrent Long Short-Term Memory (LSTM) cells in both the mask
prediction stage and in the TDoA prediction stage. The motivation
is as follows: the recurrent LSTM cells can retain long history infor-
mation [18], which is generally desired when processing sequential
data such as speech. Having the previous TDoA output available
while predicting the next value helps to avoid spurious noise and in-
terference generated peaks while maintaining a smooth trajectory of
the speaker’s TDoA values. Figure 1a illustrates the proposed model
architecture.
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(b) The DNN architecture

(a) The DNN architecture for TF
for direct TDoA estimation.

masking -based TDoA estimation.
Fig. 1: Panel a) illustrates proposed TF masking -based approach.
The sigmoid -type activation layer has B output values that represent
the TF mask 7,/ (¢, b), which is multiplied with each delay value 7 of
R,/ (7,t,b), and then summed over frequency bands before TDoA
estimation. Panel b) depicts the direct approach, which produces
TDoA without masking. This model’s last LSTM layer takes N +
N2 inputs, where NV, and N2 denote the number of neurons.

3.3. DNN Training Approaches

The below approaches (A)-(D) to train the proposed DNN architec-
ture were experimented with and compared to direct approach (E).

(A) Implicit mask training: Train using only the TDoA output.
Output: TDoA.

(B) Joint training: Train mask prediction and the TDoA predic-
tion simultaneously. Output: TF mask and TDoA.

(C) Explicit mask training: First train the TF mask prediction
layers and then freeze their weights while training the TDoA
estimation layers. Output: TF mask and TDoA.

(D) No masking: Omit the masking process (7::(¢,b) = 1 in
Fig. la), and train to predict the TDoA from GCC-PHAT val-
ues integrated over the frequency range. Output: TDoA.

(E) Direct approach: The masking stage is omitted, while the
model inputs are kept the same. See Fig. 1b. Output: TDoA.

The approach (E) tests the benefit of imposing the TF mask on the
GCC-PHAT and then integrating over the frequency range instead of
using a direct approach with the same inputs. Training was stopped if
the output error! of the validation data did not decrease in 40 consec-
utive epochs or reached 550 epochs with the adagrad optimizer [19].
The approach (C) used 50 % of the training data to train the mask,
and the rest to predict the TDoA with the frozen TF mask layers.
This was made to avoid memorizing the training data in the mask
prediction stage. The Mean Absolute Error (MAE) of TDoA was
used as the optimization criteria, since it was observed to reduce
the impact of outlier TDoA values in contrast to Mean Squared Er-
ror (MSE).

3.4. TF Mask for Training

The oracle mask is obtained by utilizing the Phase Sensitive Filter

(PSF) [20], which is also used as the target for the TF mask in models

(B), and (C): (LK) = |@iap (t, k)|
’ | (¢, k)]

where 0; is the phase difference between the direct path signal com-

ponent i qp (¢, k) and the noisy and reverberant observation z; (¢, k),

cos(6s), (6)

For DNN (B) the sum of TDoA and TF-mask errors
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Fig. 2: Simulation test data MAE values (samples, 16 kHz) for dif-
ferent DNN variants at 1 and 1.5 meter speaker distances. The base-
line is obtained using GCC-PHAT. The number of DNN parameters
is (A): 83151, (B):268671, (C):83151, (D):45201, (E):2750801.
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and the mask used in (3)is 7,7 (¢, k) = n:(¢, k) -ns (¢, k). The mask
is finally converted to mel-frequency resolution by multiplying with
the matrix W (k, b). Oracle masked TDoA is also reported and it is
obtained using (3), (4), and (6) in the mel-frequency resolution.

4. SIMULATED AND REAL-DATA

This section describes the production of the simulation and real-data.

The simulated signals consisted of speech sentences from
TIMIT [21] database convolved with synthetic RIRs produced with
the image source method [22] in a cuboid shaped room with width,
depth, and height [7,6.8,3] m, where each dimension was scaled
with a uniform random variable in range [0.5, 1.5] to obtain differ-
ent room sizes. A stereo signal with six microphone spacings be-
tween [25-30] cm in 1 cm steps was simulated for training, and for
the validation and testing sets five values between [10-26] cm in
4 cm steps were used, with an additional 2.5 mm and 5 mm bias
added for validation and testing set microphone spacings, respec-
tively. The horizontal source distance was set to 1 m from the array
center, with 10 cm random range and height fluctuation for each sen-
tence to avoid consistent echoes. The reverberation time T values
150, 300, 450, and 600 ms were used in the training data, 250 and
500 ms for the validation, and test data contained values between
[200, 1600] ms in 200 ms steps. The desired Tso was obtained by
iteratively solving a single absorption coefficient value common to
all surfaces with the Eyering’s reverberation formula [23]. A 360°
range of horizontal source angles was simulated using 180 angles
in the training and validation data, and by using 90 angles in the
test data. Small biases were added to validation and test angles to
avoid using exactly the same source angles. Training data therefore
consisted of 4320 sentences (3 hours of data), validation 1800 sen-
tences (1.2 hours), and test data 7200 sentences (5.2 hours). Differ-
ent speaker IDs were present in the training, validation, and testing
data.

The speech data is then mixed with ambient recordings
from both indoor and outdoor environments from the DEMAND
database [24]. The database [24] contains array recordings with
different microphone spacings between 5 cm and 22 cm, and the
stereo pair with nearest microphone spacing to the simulated pair
was used as the interference. The Signal to Interference Ratio (SIR)
was randomly drawn between [—5, +5] dB for each sentence and
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Fig. 3: Real-data TDoA estimates from the DNN model (A) for a
speaker (distance 2 m) in presence of a loud interference source (hair
dryer). TDoA values near zero belong to the interference source.

White Gaussian Noise (WGN) was added to result in +6 dB Signal
to Noise Ratio (SNR). The level of the observed reverberant speech
signal was used to report SIR and SNR. Non-overlapping parts of the
interference recordings was used in training, validation, and testing
data sets. The simulation was performed at 48 kHz sampling rate,
and finally all audio was downsampled to 16 kHz for processing.

4.1. Real-Data Description

Gathering of real-data was performed in an office with dimensions
4.1x4.2x3.2m, and a reverberation time of 410 ms. A smartphone2
with reported height of 154.2 mm and microphones in its both ends
was used to capture a speech signal from Librispeech [25] played
back from a loudspeaker® at 1 m distance. The recording was made
in three different positions of the room, during which the smartphone
was turned slowly to change the source angle. The experiment was
repeated at 2 m distance. The height of the loudspeaker and the
approximate smartphone height was 1.6 m. Each recording lasted
one minute, and a total of six minutes of data was collected.

To capture interference, three different types of everyday inter-
ference signals from BBC sound effects library* (hospital corridor,
interior background, and hair dryer) were played back from the loud-
speaker and recorded with the phone mounted to a stand at 1.6 m
height located approximately 2 m in front of the loudspeaker. A
fourth interference recording contained an active drip coffee brewing
machine at the same horizontal distance on a desk at 75 cm height.
Each of the captured speech signals was mixed with each of the four
types of interference to create 24 test signals. Each test signals was
mixed in multiple SIR conditions between —10 dB and +40 dB. The
SIR is reported with respect to the captured speech signals. The ref-
erence TDoAs were obtained by applying a median filter (order 55)
to the TDoAs of interference free speech recordings, obtained with
GCC-PHAT. Sampling rate of audio was 16 kHz.

5. RESULTS

All data was processed in short windows of 20 ms with 10 ms hop
length. The spatial feature tensor R, (T,t,b) was pre-calculated
for possible 7 values with the maximum physical microphone spac-
ing of 31 cm with half samples precision, i.e., the TDoA range was

2Huawei Mate 10 Pro, https://consumer.huawei.com/en/
phones/matelO-pro/specs/

3Genelec 8010A, https://www.genelec.com/8010

4obtained from Stockmusic, www . stockmusic.com
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Fig. 4: Real-data performance in the office at 1 meter speaker dis-
tance for Baseline (GCC-PHAT) and DNN (A).

T =[-15.0,—14.5,...,14.5,15.0] samples at 16 kHz. Number of
DFT bins was K = 512, and the number of mel-frequency bands
was chosen as B = 30. Different hyper-parameter values for neu-
rons N = 40, 80, 160, 320, were tried out, and the best test-set per-
formance was reported with the corresponding number of network
parameters (weights and biases). A sequence length of 160 frames
and a mini-batch size of 20 samples were selected empirically. The
model (E) was trained by fixing the common number of neurons (V)
for the TDoA and magnitude processing LSTMs to 80, while trying
out 40,80,160, and 320 neurons for the processing of GCC-PHAT
input (N2).

5.1. Simulation results

The obtained TDoA estimate was compared with the ground truth
TDoA value, and the MAE is reported as the average value over all
sentences with different microphone spacings and different source
angles for each reverberation level. Figure 2 depicts the MAE of
TDoA estimation for source distance a) 1.0 m, and b) 1.5 m, and the
number of network parameters is listed.

The TDoA obtained from the mel-frequency resolution GCC-
PHAT (Baseline) has the highest MAE values in different reverbera-
tion levels and at both source distances. The TDoA of mel-frequency
resolution oracle masked GCC-PHAT (Oracle) has the lowest er-
ror. The DNN (A) achieves the smallest MAE in all reverbera-
tion levels of the compared methods, and even reaches (Oracle) in
low-reverberation (T60<400 ms). By first learning the TF mask,
and then learning to predict the TDoA value DNN (C) results in
larger MAE than model (A). Interestingly, the MAE of using only
the GCC-PHAT for TDoA estimation, i.e., DNN (D), has compara-
ble results. The joined learning of TF mask and TDoA estimation,
i.e. DNN (B), has increased error. Finally, the direct approach of
DNN (E) results in similar performance as DNN (B), but requires ten
times more parameters. All DNN variants outperformed the base-
line. Using only the predicted TF mask of model (C) and extracting
the TDoA using (4) (Fig. 2, "TF-masking, DNN (C)”) resulted in
slight improvement over the Baseline.

Based on results of DNN (D) and the results of the method that
used only the predicted TF mask, it is apparent that the sequential
processing capability offered by the LSTM layers converting the
(masked) GCC-PHAT values into TDoA contributes the majority of
the TDoA improvement. Secondly, the results of DNN (A) suggest
that the TDoA is marginally better when the TF mask is inferred
from data than to have been learned using PSF as the target mask.
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Fig. 5: Real-data performance in the office at 2 meter speaker dis-
tance for Baseline (GCC-PHAT) and DNN (A).

5.2. Real-data results

The best performing architecture and training approach, i.e.
DNN (A), is contrasted with the GCC-PHAT -based TDoA (Base-
line). Figure 3 illustrates the resulting TDoAs of speech recorded at
two meter distance in strong interference (SIR 42 dB). Note, that
the DNN (A) is able to naturally follow the speaker related TDoA
values, even when the TDoA trail is sparse and it crosses the in-
terference source three times (0 s, 25 s, and 47 s). Tracking such
TDoA data would be a difficult task for a traditional target track-
ing approach, such as Kalman filtering [26], when relying on source
dynamics alone. Figure 4 illustrates the MAE of TDoAs from GCC-
PHAT and DNN (A) output averaged over the three recordings as a
function of the SIR for each type of interference. The vertical bars
illustrate the error’s standard deviation. The DNN (A) outperforms
the Baseline, and its MAE converges to half a sample in SIR above
15 dB, which is the TDoA resolution of the GCC-PHAT input fea-
ture. Figure 5 reports DNN (A)’s capability to generalize to distant
sources. Again, DNN (A) outperforms the Baseline. To conclude
the real-data experiments, the DNN (A) was successful in outper-
forming the baseline method with actual recorded smartphone data
in an office containing a new speaker, more distant sources than in
training, and in the presence of different types of interference.

6. CONCLUSIONS

DNN-based TF masking has been previously used in conjunction
with acoustic speaker localization. Designing the type of mask for
this task is not obvious, and the desired output is the spatial measure-
ment (here the TDoA value) and not the TF mask itself. To address
these issues, this paper proposed a DNN architecture that used mag-
nitude spectrum information to derive a TF mask that was then ap-
plied to the spatial features (GCC-PHAT). The masked GCC-PHAT
was then integrated over the frequency range and used to predict the
TDoA value of the microphone pair. A DNN architecture and train-
ing variant that learned to only predict the TDoA using implicit TF
masking outperformed other variants that additionally learned to pre-
dict the oracle mask. The approach also outperformed a direct DNN
for TDoA estimation without the TF masking stage and frequency
integration, with 30 times less parameters. The proposed architec-
ture used LSTM cells to process the sequential signal, which was ob-
served to contribute largely to the performance of the approach. The
proposed solution showed capacity to improve the TDoA estimation
over the GCC-PHAT baseline with smartphone recorded speech in
the presence of different types of interference. The solution’s online
capability improves applicability in real-time systems.
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