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ABSTRACT

A binaural sound source localization method is proposed that uses
interaural and spectral cues for localization of sound sources with
any direction of arrival on the full-sphere. The method is designed to
be robust to the presence of reverberation, additive noise and differ-
ent types of sounds. The method uses the interaural phase difference
(IPD) for lateral angle localization, then interaural and spectral cues
for polar angle localization. The method applies different weighting
to the interaural and spectral cues depending on the estimated lateral
angle. In particular, only the spectral cues are used for sound sources
near or on the median plane.

Index Terms— Binaural, localization, HRTF

1. INTRODUCTION

To localize a sound source on the full-sphere i.e. from any direc-
tion of arrival (DOA) around the listener, for non-moving sources,
the main localization cues are the interaural and spectral cues. The
head related transfer function (HRTF) describes the frequency based
filtering effect of the listener’s morphology at the listener’s ear canal
from a point in space. The time domain equivalent is the head related
impulse response (HRIR). A HRTF dataset consists of a collection
of measured HRTFs at different DOAs around the listener for both
ears [1, Chapter 1]. The interaural and spectral cues can be derived
from these HRTFs. The interaural and spectral cues change between
listeners, as the morphology of each listener is different. Therefore,
in order to localize a non-moving sound source on the full-sphere,
the listener’s unique HRTF dataset is needed. The method in this
paper is based on the method in [2]. The proposed method uses the
interaural phase difference (IPD) to estimate the lateral angle of the
sound source. The elevation is then estimated using a weighted com-
bination of the interaural and spectral cues. The method aims to be
robust to additive noise and diffuse reverberation by consideration of
the probability density function of the IPD in each frequency band.
Additionally, the method aims to be robust to reverberation by us-
ing data smoothing techniques on the localization cues. Finally, for
robustness to different sound types and convolutive noise provided
by the recording equipment, linear regression is used to remove the
slow varying component in the spectra of the binaural sound received
at both ears of the listener. The proposed method is compared with
three state of the art reference methods [3, 4, 5, 6], which have been
selected for their different approaches to binaural sound source lo-
calization.
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2. PROPOSED METHOD

In anechoic conditions, the signal received at the ear of a listener,
yζ(t) from a single sound source in space, s(t) is filtered by the
head related impulse response (HRIR), hζ(t), where the channel in-
dex, ζ ∈ {l, r} denotes the left and right ear respectively, and t
denotes continuous time. This describes the direct path of the sound.
In reverberant environments, the total impulse response is comprised
of the HRIR and an additional component provided by the acous-
tic reflections, εζ(t). The acoustic reflections consist of early re-
flections, which have directionality and later reflections which are
diffuse [2, 7]. If this sound is recorded at the ears, the record-
ing equipment and procedure may also introduce convolutive noise,
νζ(t) and additive noise, χζ(t). Thus, the signal received at the ear
of the listener is given by: yζ(t) = s(t) ∗ (hζ(t) + εζ(t)) ∗ νζ(t) +
χζ(t). Let the discrete time domain equivalent of yζ(t) be yζ(n).
The short-time Fourier transform of yζ(n) is Yζ(p,m), where p
and m are the frequency index and time index respectively. For
each time-frequency unit (p,m), the IPD is defined as: φ(p,m) =
∠(Yl(p,m)/Yr(p,m)) ∈ (−π, π]. The magnitude ratio (MR) is a
bounded form of the ILD [8]. As the ILD can result in extreme
values, the MR is used in its place. The three localization cues
used in this paper then are the IPD, MR and spectral cues. Rapid
fluctuations in the frequency domain of the localization cues of the
test sound are dissimilar to those in the frequency domain of the
localization cues extracted from the HRTF template with the same
DOA as the test sound. However, the slow varying component in
the frequency domain of each localization cue extracted from the
test sound is similar to the slow varying component in the frequency
domain of each localization cue extracted from the HRTF template
with the same DOA as the test sound. Cepstral liftering can be
used to extract this slow varying component in the frequency do-
main from both the spectral cues and the MR [9, Chapter 31] [10,
Chapter 13]. However, cepstral liftering cannot be used to extract
this slow varying component from the IPD, as it is a circular vari-
able. Instead, kernel density estimation is used with a Gaussian ker-
nel [11, Chapter 7]. Consider the level at the left and right ears,
S(p,m) = max({Yl(p,m), Yr(p,m)}). In each frequency band,
p ∈ {1, 2, 3, ..., Q}, the time indices, m̂ ∈ {1, 2, 3...} are or-
dered by their corresponding level, S(p, m̂), such that the first index,
m̂ = 1 corresponds to the highest level in frequency band, p and the
second index, m̂ = 2 corresponds to the second highest level, etc.
A kernel density estimator is used to estimate the probability den-
sity function, R(φ, f) of the IPD, φ, as a function of continuous
frequency, f , using a Gaussian kernel smoothing function. To ac-
count for phase circularity, the PDF is estimated using all aliases of
the IPD in the range (−3π, 3π] for each time-frequency unit. In [2],
univariate kernel density estimation was used to estimate the PDF of
the IPD in each frequency band. For the proposed method, it was
found that the IPD of the direct component of the sound was better
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estimated by using bivariate kernel density estimation to estimate the
PDF of the IPD as a function of frequency:
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1
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where all Gaussian components that make the kernel distribution
are assigned the same values for σφ and σf . It was experimentally
found that a value of ρ = 30 yielded the best results. The PDF
is then assessed along the IPD dimension only at the frequencies,
fp ∈ {f1, f2, f3 , ..., fQ} corresponding to each frequency index,
p, which yields a one-dimensional PDF, R̂(φ; p) as a function of
IPD, φ for each frequency index, p: R̂(φ; p) =

R(φ,f=fp)∫ π
φ=−π R(φ,f=fp) dφ

.

The estimated IPD of the direct component of the sound for each
frequency band, p is given by: υ(p) = arg maxφ∈(−π,π](R̂(φ; p)),
and the maximum value of the PDF in each frequency band is given
by: A(p) = R̂(φ = υ(p); p). In principle, the probability den-
sity of the IPD for diffuse reverberation and stereo uncorrelated
noise should be relatively flat [12]. Conversely, for a given fre-
quency band, a high ratio of time-frequency units dominated by
the direct component of the sound to time-frequency units domi-
nated by reflections or stereo uncorrelated noise yields a peak in the
probability density of the IPD. Additionally, in typical reverberant
environments, for a given frequency band, time-frequency units that
are dominated by the direct component of the sound should have
a level that is higher than time-frequency units dominated by re-
flections or stereo uncorrelated noise. Using this information, the
frequency bands within which the sound source is active can be
identified. To create the mask, Mx(p), a threshold, ηx is chosen.
The value of ηx used to generate the frequency mask for the IPD,
MR and the left and right spectral cues used to estimate the polar
angle are denoted by ηφ, ηΞ, ηl and ηr respectively. Additionally,
ηφ̃ denotes the value used to generate the frequency mask for the
IPD used to estimate the cone of confusion. The values ηφ, ηΞ, ηl,
ηr and ηφ̃ produce the frequency masks: Mφ(p), MΞ(p), M̂l(p),
M̂r(p) and Mφ̃(p) respectively. For the general case, the mask is
denoted by: Mx(p) and the corresponding threshold is denoted by
ηx. The mask, Mx(p) is given by: Mx(p) = 1 for A(p) >= ηx
and Mx(p) = 0 for A(p) < ηx. A certain percentage of samples
are needed in order for the localization cues to be useful. If needed,
the values of ηφ, ηΞ, ηl, ηr and ηφ̃ are lowered to ensure that the
percentage of Mx(p) = 1 is above a certain value. For frequency
indices, p corresponding to frequencies outside of the frequency
range of 4kHz < f < 18kHz, M̂l(p) = 0, and M̂r(p) = 0;
for frequency indices, p corresponding to frequencies outside of the
frequency range of 0Hz < f < 18kHz, Mφ(p) = 0, MΞ(p) = 0;
and for frequency indices, p corresponding to frequencies outside
of the frequency range of 0Hz < f < 11kHz, Mφ̃(p) = 0.
These values were found experimentally to yield the optimum re-
sults. The interaural-polar coordinate system is used to describe the
direction of arrival of the sound source. It does so with a lateral
angle, λ ∈ [−90◦, 90◦], and polar angle θ ∈ [−180◦, 180◦). For
the polar angles: 0◦ is at the front of the listener, 90◦ is above the
listener, and 180◦ is at the back of the listener [13]. For differing
lateral angles, there is great diversity in the interaural parameters,
for a given frequency band. However, for a fixed lateral angle, there
is a similarity in the interaural parameters in different regions on
the polar dimension, which gives rise to the cone of confusion [1,
Chapter 1]. For time-frequency units containing only sound from the

direct path within a given frequency band, the interaural parameters
should yield the same values for each of these units, irrespective
of the sound source, for a given DOA. Because the interaural pa-
rameters are sound source agnostic and diverse for differing lateral
angles, the lateral angle of the sound can be estimated with greater
reliability than the polar angle. As such, the cone of confusion is
firstly estimated and the polar angle is then estimated as a point
on the cone of confusion. For the proposed method then, a HRTF
dataset is used to generate training data to estimate the cone of
confusion by estimating the most likely HRTF pair for each polar
angle in the dataset. A grid is formed on the lateral-polar plane,
consisting of points in 2◦ increments in the lateral and polar dimen-
sions. α ∈ {1, 2, 3, ..., γ} and β ∈ {1, 2, 3, ..., ι} are the indices of
the lateral and polar angles of the points on the grid, respectively.
The HRIR pair in the HRTF dataset with the closest direction of
arrival to each grid point is referred to as hαβζ (n), which has a
corresponding HRTF pair Hαβ

ζ (p). The FFT size used to transform
the HRIRs to HRTFs is the same as the FFT size used to generate
each time frame for φ(p,m), as such the frequency index, p can be
used for both Hαβ

ζ (p) and φ(p,m). From this, the IPD templates
are generated: Υ̂αβ(p) = ∠(Hαβ

l (p)/Hαβ
r (p)) ∈ (−π, π]. The

process applied to the IPD of the test sound, φ(p, m̂) to give υ(p) is
also applied to the IPD templates Υ̂αβ(p) using a value of ρ = 1 to
give Υαβ(p). The IPD difference, Γαβφ (p) is given by: Γαβφ (p) =

∠(ejυ(p)e−jΥ
αβ(p)). For each polar angle βκ, the corresponding

lateral angle ακ that lies on the cone of confusion is given by the
maximum likelihood of the masked IPD difference: (ακ, βκ) =

arg maxα∈{1,...,γ},β=κ

∑
pMφ̃(p).ln(N (Γαβφ (p)|0, 1)), where

κ ∈ {1, 2, 3, ..., ι} are the indices of the cone of confusion, which
have corresponding lateral and polar angles (ακ, βκ).

The log-magnitude Fourier spectrum of the HRIRs in the train-
ing dataset, H́αβ

ζ (p) are found directly by using the same FFT
size used to generate each time frame for φ(p,m): H́αβ

ζ (p) =

10log10(|Hαβ
ζ (p)|2), where Hαβ

ζ (p) = F{hαβζ (n)}, where F
is the Discrete Fourier Transform (DFT). The MR, Eαβ(p) of
each HRIR pair in the training dataset is given by: Eαβ(p) =

2× (|Hαβ
l (p)|/(|Hαβ

l (p)|+ |Hαβ
r (p)|)− 1/2) In [2], the method

used all time-frequency units estimated to be above the noise
floor to estimate the spectrum of the direct component of the
test sound. One problem with this approach is that some fre-
quency bands contained more time-frequency units estimated to
contain a signal above the noise floor than other frequency bands.
This had the unintended consequence of yielding higher levels
for the spectrum in frequency bands with more estimated time-
frequency units containing a signal above the noise floor, due
to the number of time-frequency units alone. In the proposed
method, for active frequency bands, the same number of time-
frequency units are used in each frequency band to estimate the
spectrum and the MR of the direct component of the test sound.
The MR of the direct component of the test sound is estimated by:

Ξ̂(p) = 2 ·
( √∑g

m̂=1
|Yl(p,m̂)|2

(
√∑g

m̂=1
|Yl(p,m̂)|2+

√∑g
m̂=1

|Yr(p,m̂)|2)
− 1

2

)
. It

was found experimentally that g = 10 yielded the optimum results.
If the IPD of a time-frequency sample is not close to the value
of υp, then it is considered to be highly affected by reflections.
Using this knowledge, an additional constraint is used which was
found to better estimate the spectrum of the direct component of
the sound. Let m̃ denote time indices with φ(p,m) in the range:
υ(p) − τ < φ(p,m) < υ(p) + τ , ordered by their correspond-
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Fig. 1: Mean central angular error (◦) for (a,b,d) localization on the full-sphere, (c) localization on the median plane, as a function of: (a-c)
SNR, (d) sound category with binaural test sound signals generated at 30dB SNR. The results are shown for binaural test sound signals
synthetically generated using: (a-c) all of the monaural sound sources, (d) the monaural sound sources specified by the sound category in
the abscissa. The proposed method is shown using both variants: Spectral cues only, and spectral/interaural cues, as well as the reference
methods: Cross-Convolution, Speech Prefilter, and MUSIC Signal Subspace. The error bars correspond to 95% confidence intervals. The
results are shown for: (a,c,d) anechoic condition, (b) reverberant condition.

ing level, S(p,m) in descending order. The direct component of
the log-magnitude Fourier spectrum of the test sound is estimated
by: Ψ̂ζ(p) = 10log10(

∑g
m̃=1 |Yζ(p, m̃)|2). It was found experi-

mentally that g = 10 and τ = 0.5c yielded the optimum results.
Let Ψ(p) denote the log-magnitude Fourier spectrum of a signal,
ψ(n). The same operations are now performed on both the test
sound and the HRIR pairs on the estimated cone of confusion, for
both the left and right channels. To identify the peaks and notches
in the spectrum, the rapid fluctuations present in the spectrum of
the HRTFs and the test sound need to be removed. Additionally,
in the spectrum of the test sound and the HRTF templates exists
a component that slowly varies in magnitude throughout the fre-
quency range. This component has such a slow variation that it
does not obscure the location of the peaks and notches or the rela-
tive level of neighbouring peaks and notches. In order to compare
the relative positions of the peaks and notches in the test sound to
those in the HRTF templates then, this slow varying component
needs to be removed [2, 14]. The real cepstrum of the signal, ψ(n)
is given by: cv = F−1{Ψ(p)}, where v ∈ {0, ..., N − 1} are
the indices of the cepstral coefficients, cv in the cepstral domain.
Consider that applying a low-pass lifter in the cepstral domain re-
moves the rapid fluctuations in the log-magnitude Fourier spectrum.
However, in order to transform a signal to the cepstral domain, the
magnitude in the Fourier domain must be non-zero throughout the
range. Instead of transforming a signal to the cepstral domain and
applying a low-pass lifter, multiple linear regression can be used to
estimate the cepstral coefficients. The indices p̂B,ζ correspond to
frequency indices where M̂ζ(p) = 1. To find the cepstral coeffi-
cients, a = [c0 . . . cu]T , we generate a model matrix as: X =
[1 2 cos(ω(p̂B,ζ)) 2 cos(2ω(p̂B,ζ)) . . . 2 cos(uω(p̂B,ζ))],
where ω(p) is normalized discrete frequency, defined as ω(p) =
πp/J , and J is the frequency index corresponding to the Nyquist
frequency. The coefficient estimates, â can be obtained by the
usual least squares method: â = (XTX)−1XT .Ψ(p̂B,ζ), where
XT is the transpose of X [15]. The rapid fluctuations of the
log-magnitude Fourier spectrum are removed by reconstructing the
log-magnitude Fourier spectrum without using the higher order co-
efficients: Ψ̌(p) = 2

∑u
v=1 cv cos(vω(p)). It should be noted that

c0 is not used in the reconstruction of the log-magnitude Fourier
spectrum, resulting in Ψ̌(p) having a mean of zero. It was experi-
mentally found that u = 25 yielded the optimum results. Let Ξ(p)
denote the MR of a signal, ψ(n). The same procedure performed
on Ψ(p) to yield Ψ̌(p) is performed on Ξ(p) to yield Ξ̌(p). For
the specific cases, let Ξ̌(p) be denoted by Ξ̀(p) and Èκ(p) for the

test sound and HRIR pairs on the cone of confusion respectively.
The authors in [14] note that the first peak in the spectrum of the
HRTF acts as a reference position for the other spectral peaks and
notches. The proposed method uses the same principle. The lower
limit for the frequency range for the spectrum, f̂ζ is chosen as the
frequency that has a corresponding frequency index which yields
the maximum level in Ψ̌(p̂B,ζ) for the test sound in the 4kHz -
6kHz frequency range. 4kHz - 6kHz is the approximate frequency
range of the first peak in the spectrum of the HRTFs. This lower
limit, which is found for the spectrum of the test sound is also used
for the HRTF templates. The mask Mζ(p) has the same values
as the mask M̂ζ(p), with the exception that for frequency indices,
p corresponding to frequencies outside of the frequency range of
f̂ζ < f < 18kHz, Mζ(p) = 0. The indices pB,ζ correspond to fre-
quency indices where Mζ(p) = 1. The slow varying component of
Ψ̌(p) is denoted by: Ψ̌s(p). It is found by simple linear regression of
Ψ̌(pB,ζ) using the ordinary least squares method. This slow varying
component is removed to give Ψ̀(p), so that the peaks and notches of
the spectra of the test sound and HRTF templates can be compared,
i.e. Ψ̀(p) = Ψ̌(p) − Ψ̌s(p). For the specific cases, let Ψ̀(p) be
denoted by Ỳζ(p) and H̀κ

ζ (p) for the test sound and HRIR pairs on
the cone of confusion respectively. The spectral difference, Γ̂κζ (p) is
given by: Γ̂κζ (p) = Ỳζ(p) − H̀κ

ζ (p). Let σ{.} denote the standard
deviation operation. The normalized spectral difference is given by:
Γκζ (p) = Ỳζ(p)/σ{Ỳζ(pB,ζ)} − H̀κ

ζ (p)/σ{H̀κ
ζ (pB,ζ)}, and the

normalized MR difference is given by:ΓκΞ(p) = Ξ̀(p)/σ{Ξ̀(pD)}−
Èκ(p)/σ{Èκ(pD)}, where the indices pD correspond to frequency
indices where MΞ(p) = 1. Let λ̂ denote the median of the lateral
angles of the estimated entries on the cone of confusion, κ. The
lateral angles, |λ| < 10◦ are considered to be close to the median
plane, such that the interaural cues are unreliable. For this region,
only the spectral cues are used, and the weighting is equal for both
ears. The non-normalized spectra are used for localization in this
region, as the spectra of HRTFs with DOAs above the listener are
relatively flat. Normalization of the spectra of the test sound at
these DOAs places an emphasis on the spectral shape of the noise
rather than the HRTF, which yields a confounding result for the
estimated DOA of the test sound. For DOAs with a lateral angle
away from the median plane, the DOA of the test sound is better
estimated using the normalized spectra, as in these regions there
isn’t a HRTF with a flat spectrum and normalization allows for
a better comparison of the shape of the spectra of the test sound
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and HRTF templates. For |λ̂| < 10◦ the log-likelihood distribu-
tion, Z(βκ) of each polar angle on the cone of confusion, βκ is
given by: Z(βκ) = 0.5×

∑
ζ∈{l,r}

∑
pMζ(p).ln(N (Γ̂κζ (p)|0, 1)).

The other regions are: (V × 10)◦ <= |λ̂| < ((V + 1) × 10)◦

, for V < 8, and (V × 10)◦ <= |λ̂| <= ((V + 1) × 10)◦,
for V = 8, where V ∈ {1, ..., 8}. The channel index is now
denoted in terms of the ipsilateral ear, I and contralateral ear, K,
i.e. ζ ∈ {I,K}. For λ̂ >= 0◦, the left ear is the ipsilateral
ear and the right ear is the contralateral ear, and for λ̂ < 0◦,
the right ear is the ipsilateral ear and the left ear is the contralat-
eral ear. For |λ| >= 10◦ it was found that the spectral cue of
the contralateral ear provided confounding information due to the
high amount of reverberation and noise present in its spectrum.
Using this information, for |λ̂| >= 10◦ the weights: wVI , wVΞ ,
wVφ are used to weight the normalized spectral difference of the
ipsilateral ear, ΓκI (p), the normalized MR difference, ΓκΞ(p) and
the IPD difference, Γκφ(p) respectively to create the log-likelihood
distribution, Z(βκ) of each polar angle on the cone of confusion,
βκ. For |λ̂| >= 10◦, the log-likelihood distribution is given by:
Z(βκ) =

∑
x∈{I,Ξ,φ} w

V
x ·

∑
pMx(p) . ln(N (Γκx(p)|0, 1)). The

HRTF template index, κ̂ corresponding to the estimated lateral and
polar angle of the test sound is given by: κ̂ = arg maxκ(Z(βκ)). A
brute force approach is taken to learn these weights in each region,
V , using validation data consisting of binaural sounds generated
with the second tokens of the environmental sounds in [16], and 10
speech samples not included in the test data from the CSTR VCTK
corpus [17]. The HRTF dataset used to generate the validation data
is the dataset measured at IRCAM in 2014 as part of the “Club Fritz”
project [18]. The testing condition in the method shown above uses
the interaural and spectral cues for localization on the full-sphere.
A second testing condition uses only the spectral cues to resolve the
cone of confusion, i.e. wVΞ = 0, and wVφ = 0.

3. TESTING PROCEDURE

In this paper, the proposed method is used to estimate the cone of
confusion, (ακ, βκ). The reference methods then estimate which
of the DOAs, (ακ, βκ) is the true DOA of the sound source. In
this paper, slight modifications are made to the reference methods
to improve their robustness to the testing conditions, while the spirit
of the methods are retained. The reference methods are the Cross-
Convolution method [4, 3], the Speech Prefilter method [5] and the
MUSIC (MUltiple SIgnal Classification) Signal Subspace method
[6]. Our implementation of these methods is described in [19]. In
order to test the robustness of the localization methods, a diverse
range of monaural sound sources are used to generate the binaural
test sound signals. These include 10 environmental sounds taken
from [16], 10 speech samples chosen from the CSTR VCTK corpus
[17], white noise and pink noise. The HRTF dataset used to gener-
ate training data for all conditions is the Gauss-Legendre 2◦ dataset,
measured in [20]. The HRTF dataset used to generate the binaural
test sound signals for the anechoic condition is the dataset measured
at RIEC, Tohoku University as part of the “Club Fritz” project [18].
For the reverberant condition the binaural test sound signals are pro-
duced using the BRIRs from the dataset measured in [21], with the
dummy head facing the front of the room. A full sphere localization
test is conducted using the DOAs of the loudspeakers in [21] for the
reverberant condition. For the anechoic condition, the HRIR pairs in
the RIEC dataset with DOAs nearest to the DOAs used in the rever-
berant condition are used. Additionally, a median plane localization
test is conducted using the RIEC dataset and the 22 monaural sound

sources to generate the binaural test sound signals. For this condi-
tion, 35 HRIR pairs are used, all of which lie on the median-plane
and are spaced in 10◦ increments, with the exception of a HRIR
pair at θ = −90◦, which is absent. For the median plane localiza-
tion test, as shown in Figure 1c, only HRTF templates that lie on
the median plane are used for training data. These HRTF templates
are directly used as the entries for the cone of confusion. The bin-
aural test sound signals are created synthetically by convolving the
HRIR pairs at each of the test positions with each of the 22 monaural
sound sources. Stereo uncorrelated pink noise is added to the binau-
ral test sound signals to give signal-to-noise ratios (SNRs) from 0dB
to 30dB in 10dB steps.

4. RESULTS AND DISCUSSION

For all methods, the central angular error is the angle between the
ground truth test position and the estimated position of the sound
source, from the point of view of the listener [22]. The proposed
method using interaural and spectral cues outperforms the reference
methods in all testing conditions. The cross-convolution method
performs poorly in most testing conditions. This could be due to
the method only using an interaural comparison, and not using any
technique to be robust to noise or reverberation. Figure 1a and Fig-
ure 1b show the mean central angular error as a function of SNR
for localization on the full-sphere, for the anechoic and reverber-
ant testing conditions respectively. It can be seen that the proposed
method using the interaural and spectral cues outperforms the pro-
posed method using only spectral cues, showing that the interaural
cues can improve localization in the polar dimension. For the pro-
posed method, the results for the anechoic conditions are similar to
those in the reverberant condition, showing that the method is robust
to the presence of reverberation. Figure 1c shows the mean central
angular error as a function of SNR for localization of sound sources
on the median plane. Around the median plane, a slight position-
ing error when measuring HRTFs can result in a large difference
in the interaural cues between different HRTF datasets. The Cross-
Convolution, and MUSIC Signal Subspace methods both implicitly
use interaural cues for localization, which results in large errors for
this testing condition. The proposed method and the Speech Prefilter
method both use spectral cues only for median plane localization, re-
sulting in more accurate localization estimates in this region. Figure
1d shows the mean central angular error as a function of sound cat-
egory. The Speech Prefilter method is fairly robust against speech,
though the method trains a prefilter as the average speech spectrum
in an attempt to remove the slow varying component of the spec-
trum, which can result in higher errors for speech sounds that have
spectra that do not resemble the average speech spectrum. It can be
seen that the proposed method is robust to the different sounds. One
reason is because the proposed method uses linear regression to es-
timate the slow varying component in the spectrum, and as such is
more generalizable to different sound types.

5. CONCLUSION

The proposed method outperforms the state of the art binaural sound
source localization methods in all testing conditions. The proposed
method is robust to reverberation, additive noise and sound category.
Using spectral cues only for localization of sound sources on the
median plane allows for better localization estimates in this region.
Away from the median plane, it was found that incorporating inter-
aural parameters increases the performance of the method.
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