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ABSTRACT

Deep architectures have become ubiquitous in Music In-
formation Retrieval (MIR) tasks, however, concurrent studies
still lack a deep understanding of the input properties being
evaluated by the networks. In this study, we show by the ex-
ample of a Music Genre Classification system the potential
dependency on the tuning frequency, an irrelevant and con-
founding variable. We generate adversarial samples through
pitch-shifting the audio data and investigate the classification
accuracy of the output depending on the pitch shift. We find
the accuracy to be periodic with a period of one semitone, indi-
cating that the system is utilizing tuning information. We show
that proper data augmentation including pitch-shifts smaller
than one semitone helps minimizing this problem and point
out the need for carefully designed augmentation procedures
in related MIR tasks.

Index Terms— tuning frequency, music genre classifi-
cation, model evaluation, convolutional recurrent neural net-
works

1. INTRODUCTION

Music has become ubiquitous in our daily lives, and with
an increasing amount of data online comes an increasing de-
mand for automated analysis and categorization of this data.
Music Information Retrieval (MIR) is ”a multidisciplinary
research endeavor that strives to develop innovative content-
based searching schemes, novel interfaces, and evolving net-
worked delivery mechanisms in an effort to make the world’s
vast store of music accessible to all” [1]. While early MIR
systems were often based on expert-designed signal process-
ing systems (e.g., [2]), most concurrent systems are built on
data-driven machine learning approaches [3]. More specifi-
cally, various forms of deep learning approaches are nowadays
considered state-of-the-art for the majority if not all of MIR
tasks.

Deep Neural Networks (DNNs), however, often cannot be
interpreted easily and lack intuitive approaches to understand-
ing why the network makes specific decisions. This opacity
has triggered recent work on reverse engineering and visualiz-

ing states of the network to allow for insights into the learned
model [4, 5].

As an insightful analysis of internal and intermediate re-
sults remains hard despite these efforts, we analyze what a
DNN has learned by investigating the output of the network
in this study. The system is therefore treated as a black box
instead of a program that can be modified to gain access to
intermediate or internal results. More specifically, we test a
classification system with input files that contain perceptually
identical content, i.e., humans would categorize them in the
same class and to evaluate how the system reacts to these
imperceptibly modified inputs. For this purpose, we choose
Music Genre Classification (MGC) as an example task. It is a
well-researched topic that has been one of the early and proba-
bly most popular MIR tasks with a large number of relevant
publications spanning the past two decades. Genre classifica-
tion is also a fitting prototype classification task because of its
high similarity to other MIR tasks such as Mood Recognition,
Music Tagging, and Artist Identification, as well as its relation
to tasks such as Vocal Activity Detection and Instrument Iden-
tification. We modify the pitch of the test signals of a MGC
system under the assumption that a small pitch variation is
irrelevant and will not impact the genre of a piece of music.
That means that we assume that, for example, that a piece
played in the musical key of D-Major can also be played in
D#-Major (or starting from a root note tuned between D and
D#) and still be considered the same musical genre.

The remainder of this paper is structured as follows: Sect. 2
introduces related work on genre classification, model eval-
uation, and the role of tuning frequency in MIR. Section 3
introduces the experimental setup and the systems used, and
Sect. 4 presents and discusses the results. Finally, we draw our
conclusions in Sect. 5.

2. RELATED WORK

2.1. Genre Classification

The definition of MGC poses some fundamental problems
(e.g., inconsistency and non-orthogonality of genre labels,
compare [6]) that even lead researchers to suggest abandoning
all attempts and focusing on other tasks [7]. Nevertheless, it
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remains a popular research topic in the field of MIR, initially
set in motion by Tzanetakis and Cook’s seminal publication
in 2002 [8], proposing a standard machine learning pipeline
with feature extraction and aggregation followed by a classi-
fier. Their system triggered research which usually focused
either on improving the dominant low-level features describing
timbral content, such as Mel-Frequency Cepstral Coefficients
(e.g., [9, 10]), or on using more sophisticated classifier models
[11]. An overview of feature-driven approaches to MGC can
be found in [12].

These traditional machine learning methods were quickly
replaced by the often more successful deep learning meth-
ods [13, 14]. In MGC specifically, a common deep learning
architecture is a Convolutional Neural Network (CNN) with
a mel-spectrogram input [15]. Recurrent Neural Networks
(RNN) are, in contrast to CNNs which look at one snippet
of data at a time, able to learn patterns in a sequence [16].
Convolutional Recurrent Neural Networks (CRNNs) combine
these two approaches in a hybrid model by replacing the last
convolutional layers with a RNN [17].

2.2. Tuning Frequency in MIR Systems

The concert pitch A4 is the pitch commonly used for tuning
one or more musical instruments. Its frequency, the tuning fre-
quency, is standardized internationally to 440 Hz [18], but the
exact frequency used by musicians can vary due to a variety
of reasons. These reasons can include, for example, the usage
of historic instruments, timbre preferences, and even low or
high room temperatures while recording. These deviations
can easily span a quarter-tone or more [19]. Therefore, the
estimation of tuning frequency [20, 21] is considered essential
in pitch-focused MIR systems (key and chord detection, pitch
transcription). For other MIR systems, such as MGC, tuning
frequency is ignored as it is considered an irrelevant property
for the task. For example, listeners will categorize genre iden-
tically if the same song is played at a slightly higher or lower
pitch.

2.3. Model Evaluation

In image classification, researchers have worked on under-
standing network behavior by generating adversarial test in-
puts resulting in misclassification even though the input varies
only imperceptibly from a correctly classified input [22, 23].
The results imply that it might be the linear behavior in high-
dimensional spaces that causes such behavior.

Other ways of evaluating the functionality of neural net-
works investigate the inner state of the network by, e.g., visu-
alizing (projections of) network layer activations [22, 4, 5].

In the context of MGC, Sturm addresses adversarial exam-
ples by pointing out that not only the classification accuracy on
a specific dataset should matter in the evaluation of an MGC
system, but also — among others — its robustness, meaning

Fig. 1. Experimental flowchart.

that the system should be invariant to aspects inconsequen-
tial for the human identification of genre [24]. In a different
study, the same author shows that systems which appear capa-
ble of the task of MGC might actually be utilizing irrelevant
characteristics or confounds [25].

3. EXPERIMENTAL SETUP

Building on Sturm’s findings [25], our experimental setup is
based on the hypothesis that state-of-the-art DNNs for MGC
are, while quite capable of achieving high accuracy on com-
mon datasets, impacted by irrelevant characteristics. In our
study, we are investigating the impact of the tuning frequency
on the classification accuracy of a Music Genre Classifier. As
humans will not classify a piece of music differently just be-
cause it is slightly shifted in pitch, pitch shifting by small
amounts should not impact classification accuracy.

Our general methodology is shown in Fig. 1. We use a
state-of-the-art MGC architecture and two established datasets.
The test data is augmented by pitch shifting up and down in
small increments. We then measure the accuracy depending on
the pitch shift factor. The details are outlined in the subsections
below.

3.1. Classification Model

The CRNN model presented by Choi [17] uses a 2-layer RNN
to summarize temporal patterns on top of the 2-dimensional 4-
layer CNNs. Based on Choi’s model which is available online
(trained for Auto-Tagging with the Million Song Dataset), we
use transfer learning [26, 27] to adapt the model to MGC with
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our data (see Sect. 3.2). The input is the log-amplitude mel-
spectrogram of the down-sampled (12 kHz) audio as generated
by the library librosa 1 (96 mel-bins, hop-size 256 samples).
The resulting input dimensions are 96× 1366 (mel-frequency
bands × time frames). The output layer is replaced with a
new layer with sigmoid activation functions and with as many
output nodes as the number of classes. We use ADAM as
optimizer [28] and categorical cross-entropy as a loss function.

3.2. Data

The experiment is based on two datasets, the GTZAN dataset
[8] with 1000 audio clips covering 10 genres and the FMA-
small dataset [29] with 8000 audio clips and 8 genres. Both
datasets are balanced and all audio clips have a length of 30 s.

We perform 5-fold cross-validation to examine the perfor-
mance of each model. We randomly split the dataset into five
equal-sized subsets, resulting in a training/testing ratio of 4 : 1.
We then treat the average accuracy as the test accuracy of each
of the experimental models.

3.3. Data Augmentation

That data is augmented by changing the pitch using a state-
of-the-art commercial pitch-shifting engine which is industry
standard.2 This pitch shifting engine is integrated in the ma-
jority of professional music production software and should
provide high quality pitch shifting with a minimum of artifacts.
A code review and discussions with the developers ensured
that the pitch shifting engine is not optimized for specific pitch
factors. The tempo of the songs keeps unchanged as tempo has
been shown to be a feature relevant for MGC [30]. Correspond-
ing to a pitch-shifting factor range of 0.75–1.34 with 0.01 per
step, the data is pitch-shifted in the range of ±5 semitones
with 4–6 steps per semitone.

3.4. Experiments

The following experiments are being presented:
• Exp. 1: Train the network (initialized with the original

tagging-weights) with both training sets and report the
results on both augmented test sets.

• Exp. 2: Train the network with both augmented training
sets and report the results on both augmented test sets.

In both scenarios, the classification accuracy is reported.

4. RESULTS

4.1. Experiment 1

The results for Exp. 1 are shown in Fig. 2. As expected, the
test accuracy of the unpitched songs (pitch shift = 0) is the

1https://doi.org/10.5281/zenodo.1342708
2zplane ELASTIQUE: www.time-stretching.com, last access:

Oct 19, 2018
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Fig. 2. Classification accuracy on both datasets in dependence
of the pitch-shift

absolute maximum for both datasets. The maximum accuracy
for GTZAN and FMA is about 88.0% and 61.9%, respectively.
This is roughly in line with our expectations based on previ-
ous results [12], but note that we concern ourselves not too
much about the absolute values of our results as our experi-
ments are focused on evaluating the relative changes. It can
be observed that for both datasets the accuracy drops with
increasing pitch shift. There is a variability of this decrease of
up to approx. 10%.

The general decrease in accuracy with increasing pitch
shift is expected. On the one hand, instrument and general
timbre characteristics of the audio might be shifted out of
the generally expected range and thus impact classification
accuracy; on the other hand, the pitch-shifting is expected
to start producing noticeable artifacts for extreme pitch shift
factors which could in turn impact the classification accuracy.

The surprising and noteworthy result, however, is the pe-
riodicity of the result. We observe local maxima at (or close
to) pitch shift factors at integer multiples of one semitone and
local minima in-between. This means that the classification
result of one song and the same song pitch-shifted by half
a semitone might be different. In other words, the classifier
is not invariant to irrelevant pitch changes within a semitone
range. This indicates that the network actually takes into ac-
count the tuning frequency of a song, an irrelevant variable.
Obviously, this is an undesired effect with implications on the
performance of a multitude of music analysis and synthesis
systems.

To further investigate this phenomenon, we track the ac-
curacy of individual genres in the GTZAN dataset. Figure 3
shows four prototypical genres: strong periodicity plus general
decrease with increasing pitch shift (Pop), slight periodicity
and general decrease (Rock), fluctuation with general decrease
(Blues), and general robustness to pitch shifting (Jazz). From
these results, we see two trends: first, the more acoustic in-
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Fig. 3. Classification accuracy on selected GTZAN genres

struments are used, the less pronounced the effect appears as
the likelihood of a diverse training set increases (synthesizers
and electronic music equipment usually defaults to 440 Hz
while the tuning of acoustic instruments is in the hands of the
musicians). Second, the impact on genres with very high clas-
sification accuracy is minimal, indicating that the classification
is so robust that a pitch shift cannot influence the result.

4.2. Experiment 2

When the model is trained with the augmented data, however,
the periodicity of the results disappears as shown in Fig. 4. As
expected, we can still identify a tendency of generally declin-
ing accuracy at large pitch-shifts, but otherwise we receive a
roughly constant pitch-shift-independent classification accu-
racy, albeit with noticeable variability. The absolute maximum
is not found anymore at pitch shift 0, which speaks towards
the general noisiness of the results.

As expected, the semitone periodicity of the result can be
removed by training with augmented data. The tuning fre-
quency dependency without data augmentation, however, is
confounding and should be generally tested for in neural audio
analysis and synthesis systems. Although data augmentation
is increasingly used in the training of neural networks with au-
dio, the usual augmentation approaches usually pitch-shift by
integer multiples of semitones [31, 32]. This could lead to the
same tuning frequency dependency that we observe here, and
is clearly not desirable for the majority of classification tasks.
This problem applies specifically to neural networks; tradi-
tional timbre-feature-based classification systems use features
(e.g., Mel Frequency Cepstral Coefficients) that are designed
to be pitch independent.

A side effect of augmenting the training data is that the
general decrease at large pitch shifts disappears or at least
is not strong. It indicates that the system is learning to deal
with larger pitch shifts, but whether this is desired or not is a
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Fig. 4. Classification accuracy in dependence of the pitch-shift
when trained with augmented data

different discussion.

5. CONCLUSION

We presented an experiment examining the robustness of a neu-
ral network against irrelevant tuning frequency changes. The
results show that a state-of-the-art network, trained for the task
of genre classification, is confounded by modifications of the
tuning frequency other than shifts by semitones, as the classifi-
cation accuracy drops for pitch shifts of 0.5, 1.5, . . . semitones.
This is a noteworthy result as it might indicate the vulnerability
of general music classification systems even if they are trained
with data augmented by pitch-shifting. We call for a careful
reevaluation of training and data augmentation practices in
MIR systems to ensure that tuning frequency may not become
a generally confounding variable for these systems.

Future work will aim at evaluating this dependency for
other tasks such as mood classification or instrument detection
as well as conducting experiments with other architectures.
We also plan to look into other transformations that are irrel-
evant for specific tasks; these might include time-stretching,
amplification, filtering, etc.
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timedia, vol. 16, no. 6, pp. 1636–1644, 2014.

[26] Y Bengio, “Deep learning of representations for unsu-
pervised and transfer learning,” in JMLR W&CP, 2012,
vol. 27, pp. 17–36.

[27] J Yosinski, J Clune, Y Bengio, and H Lipson, “How
transferable are features in deep neural networks?,” in
NIPS, Montreal, 2014.

[28] DP Kingma and J Ba, “Adam: A method for stochastic
optimization,” in ICLR, San Diego, 2015.

[29] K Benzi, M Defferrard, P Vandergheynst, and X Bresson,
“FMA: A dataset for music analysis,” in ISMIR, Suzhou,
2017.

[30] F Gouyon, S Dixon, E Pampalk, and G Widmer, “Eval-
uating Rhythmic descriptors for Musical Genre Classi-
fication,” in Int. Conf. on Metadata for Audio. 2004,
AES.

[31] B McFee, EJ Humphrey, and JP Bello, “A Software
Framework for Musical Data Augmentation,” in ISMIR,
Malaga, 2015.

[32] S Kum, C Oh, and J Nam, “Melody Extraction on Vocal
Segments Using Multi-Column Deep Neural Networks,”
in ISMIR, New York, 2016.

405


		2019-03-18T10:49:22-0500
	Preflight Ticket Signature




