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ABSTRACT

For many music analysis problems, we need to know the pres-
ence of instruments for each time frame in a multi-instrument
musical piece. However, such a frame-level instrument recog-
nition task remains difficult, mainly due to the lack of labeled
datasets. To address this issue, we present in this paper a
large-scale dataset that contains synthetic polyphonic music
with frame-level pitch and instrument labels. Moreover, we
propose a simple yet novel network architecture to jointly pre-
dict the pitch and instrument for each frame. With this multi-
task learning method, the pitch information can be leveraged
to predict the instruments, and also the other way around.
And, by using the so-called pianoroll representation of music
as the main target output of the model, our model also pre-
dicts the instruments that play each individual note event. We
validate the effectiveness of the proposed method for frame-
level instrument recognition by comparing it with its single-
task ablated versions and three state-of-the-art methods. We
also demonstrate the result of the proposed method for multi-
pitch streaming with real-world music. For reproducibility,
we will share the code to crawl the data and to implement the
proposed model at: https://github.com/biboamy/
instrument-streaming.

Index Terms— Instrument recognition, pitch streaming

1. INTRODUCTION

Pitch and timbre are two fundamental properties of musical
sounds. While the pitch decides the notes sequence of a mu-
sical piece, the timbre decides the instruments used to play
each note. Since music is an art of time, for detailed analy-
sis and modeling of the information of a musical piece, we
need to build a computational model that predicts the pitch
and instrument labels for each time frame. With the release
of several datasets [1, 2] and the development of deep learn-
ing techniques, recent years have witnessed great progress in
frame-level pitch recognition, a.k.a., multi-pitch estimation
(MPE) [3, 4]. However, this is not the case for the instrument
part, presumably due to the following two reasons.

First, manually annotating the presence of instruments for
each time frame in a multi-instrument musical piece is a time-
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Fig. 1. Architecture of the proposed model, which employs
three loss functions for predicting the (multitrack) pianoroll,
the pitch roll, and the instrument roll. The pitch and instru-
ment predictions are computed directly from the predicted pi-
anoroll, which is a tensor of {frequency, time, instrument}.

consuming and labor-intensive process. As a result, most
datasets available to the public only provide instrument la-
bels on the clip level, namely, labeling which instruments are
present over an entire audio clip of possibly multi-second long
[5–8]. Such clip-level labels do not specify the presence of in-
struments for each short-time frame (e.g., multiple millisec-
onds, or for each second). Datasets with frame-level instru-
ment labels emerge only over the recent few years [1,2,9,10].
However, as listed in Table 1 (and will be discussed at length
in Section 2), these datasets contain at most a few hundred
songs and some of them contain only classical musical pieces.
The musical diversity found in these datasets might therefore
not be sufficient to train a deep learning model that performs
well for different musical pieces.

Second, we note that most recent work that explores deep
learning techniques for frame-level instrument recognition fo-
cuses only on the instrument recognition task itself and adopts
the single-task learning paradigm [13, 14, 16]. This has the
drawback of neglecting the strong relations between pitch and
instruments. For example, different instruments have their
own pitch ranges and tend to play different parts in a poly-
phonic musical composition. Proper modeling of the onset
and offset of musical notes may also make it easier to de-
tect the presence of instruments [14]. From a methodological
point of view, we see a potential gain to do better than these
prior arts by using a multitask learning paradigm that models
timbre and pitch jointly. This requires a dataset that contains
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Pitch labels Instrument labels Real or Synth Genre Number of Songs
MedleyDB [1] 4 [3, 11]

√
[12, 13] Real Variety 122

MusicNet [2]
√

[4]
√

[14] Real Classical 330
Bach10 [9]

√
[9]

√
[15] Real Classical 10

Mixing Secret [10]
√

[13] Real Variety 258
MuseScore (this paper)

√ √
Synthetic Variety 344,166

Table 1. This table provides information regarding some datasets that provide frame-level labels for either pitch or instrument:
whether the audio is real or synthetic, the genre and the number of songs. We also cite some papers (after the symbols

√
or4)

that employed these datasets for training either pitch or instrument recognition models. And, we use4 to denote ‘part of it.’

both frame-level pitch and instrument labels.
In this paper, we introduce a new large-scale dataset called

MuseScore to address these needs. The dataset contains the
audio and MIDI pairs for 344,166 musical pieces downloaded
from the official website (https://musescore.org/)
of MuseScore, an open source and free music notation soft-
ware licensed under GPL v2.0. The audio is synthesized from
the corresponding MIDI file, usually using the sound font of
the MuseScore synthesizer. Therefore, it is not difficult to
temporally align the audio and MIDI files to get the frame-
level pitch and instrument labels for the audio. Although the
dataset only contains synthesized audio, it includes a variety
of performing styles in different musical genres.

Moreover, we propose to transform each MIDI file to the
multitrack pianoroll representation of music (see Fig. 1 for
an illustration) [17], which is a binary tensor representing the
presence of notes over different time steps for each instru-
ment. Then, we propose a multitask learning method that
learns to predict from the audio of a musical piece its (mul-
titrack) pianoroll, frame-level pitch labels (a.k.a., the pitch
roll), and the instrument labels (a.k.a., the instrument roll).
While the latter two can be obtained by directly summing up
the pianoroll along different dimensions, the three involved
loss functions would work together to force the model learn
the interactions between pitch and timbre. Our experiments
show that the proposed model can not only perform better
than its task-specific counterparts, but also existing methods
for frame-level instrument recognition [13, 14, 16].

2. BACKGROUND

To our knowledge, there are four public-domain datasets that
provide frame-level instrument labels, as listed in Table 1.
Among them, MedleyDB [1], MusicNet [2] and Bach10 [9]
are collected originally for MPE research, while Mixing
Secret [10] is meant for instrument recognition. When it
comes to building “clip-level” instrument recognizers, there
are other more well-known datasets such as the ParisTech [5]
and IRMAS [6] datasets. Still, there are previous work that
uses these datasets for building either clip-level [12, 15] or
frame-level [13, 14] instrument recognizers.

There are three recent works on frame-level instrument

recognition. The model proposed by Hung and Yang [14] is
trained and evaluated on different subsets of MusicNet [2],
which consists of only classical music. This model considers
the pitch labels estimated by a pre-trained model (i.e. [3]) as
an additional input to predict instrument, but the pre-trained
model is fixed and not further updated. The model presented
by Gururani et al. [13] is trained and evaluated on the combi-
nation of MedleyDB [1] and Mixing Secrets [10]. Both [14]
and [13] use frame-level instrument labels for training. In
contrast, the model presented by Liu et al. [16] uses only
clip-level instrument labels associated with YouTube videos
for training, using a weakly-supervised approach. Both [16]
and [13] do not consider pitch information.

As the existing datasets are limited in genre coverage or
data size, prediction models trained on these datasets may not
generalize well, as shown in [3] for pitch recognition. Unlike
these prior arts, we explore the possiblity to train a model on
large-scale synthesized audio dataset, using a multitask learn-
ing method that considers both pitch and timbre.

OpenMIC-2018 [7] is a new large-scale dataset for train-
ing clip-level instrument recognizers. It contains 20,000 10-
second clilps of Creative Commons-licensed music of various
genres. But, there is no frame-level labels.

Multi-pitch streaming has been referred to as the task that
assigns instrument labels to note events [18]. Therefore, it
goes one step closer to full transcription of musical audio than
MPE. However, as the task involves both frame-level pitch
and instrument recognition, it is only attempted sporadically
in the literature (e.g., [18, 19]). By predicting the pianorolls,
the proposed model actally performs multi-pitch streaming.

3. PROPOSED DATASET

The MuseScore dataset is collected from the online forum of
the MuseScore community. Any user can upload the MIDI
and the corresponding audio for the music pieces they create
using the software. The audio is therefore usually synthesized
by the MuseScore synthesizer, but the user has the freedom to
use other synthesizers. The audio clips have diverse musical
genres and are about two mins long on average. More statis-
tics of the dataset can be found from our GitHub repo.

While the collected audio and MIDI pairs are usually well
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Fig. 2. The network architecture of the proposed model. It has
a simple U-net structure [23] with four residual convolution
layers and four residual up-convolution layers.

aligned, to ensure the data quality we further run the dynamic
time warping (DTW)-based alignment algorithm proposed by
Raffel [20] over all the data pairs. We then compute from each
MIDI file the groundtruth pianoroll, pitch roll and instrument
roll using Pypianoroll [17].

The dataset contains 128 different instrument categories
as defined in the MIDI spec. A main limitation is that there is
no singing voice. This can be made up by datasets with labels
of vocal activity [21], such as the Jamendo dataset [22].

Due to copyright issues, we cannot share the dataset itself
but the code to collect and process the data.

4. PROPOSED MODEL

As Fig. 1 shows, the proposed model learns a mapping f(·)
(i.e., the ‘Model’ block in the figure) between an audio rep-
resentation X, such as the constant-Q transform (CQT) [24],
and the pianoroll Yroll ∈ {0, 1}F×T×M , where F , T and M
denote the number of pitches, time frames and instruments,
respectively. Namely, the model can be viewed as a multi-
pitch streaming model. The model has two by-products, the
pitch roll Yp ∈ {0, 1}F×T and the instrument roll Yi ∈
{0, 1}M×T . As Fig. 1 shows, from an input audio, our model
computes Ŷp and Ŷi directly from the pianoroll Ŷroll pre-
dicted by the model. Therefore, f(·) contains all the learnable
parameters of the model.

We train the model f(·) with a multitask learning method
by using three cost functions, Lroll, Lp and Li, as shown in
Fig. 1. For each of them, we use the binary cross entropy
(BCE) between the groundtruth and the predicted matrices
(tensors). The BCE is defined as:

L∗ = −
∑

[Y∗ · lnσ(Ŷ∗)+(1−Y∗) · ln(1−σ(Ŷ∗))] , (1)

where σ is the sigmoid function that scales its input to [0, 1].
We weigh the three cost terms so that they have the same
range, and use their weighted sum to update f(·).

In sum, pitch and timbre are modeled jointly with a shared
network by our model. This learning method is designed for
music and, to our knowledge, has not been used elsewhere.

Method Instrument Pitch Pianoroll
Lroll only (ablated) — — 0.623
Li only (ablated) 0.896 — —
Lp only (ablated) — 0.799 —

all (proposed) 0.947 0.803 0.647

Table 2. Performance comparison of the proposed multitask
learning method (‘all’) and 3 single-task ablated versions, for
frame-level instrument recognition (in F1-score), frame-level
pitch recognition (Acc), and pianoroll prediction (Acc) using
the triaining and test subsets of MuseScore, for 9 instruments.

4.1. Network Structure

The network architecture of our model is shown in Fig. 2. It
is a simple convolutional encoder/decoder network with sym-
metric skip connections between the encoding and decoding
layers. Such a “U-net” structure has been found useful for im-
age segmentation [23], where the task is to learn a mapping
function between a dense, numeric matrix (i.e., an image) and
a sparse, binary matrix (i.e., the segment boundaries). We
presume that the U-net structure can work well for predict-
ing the pianorolls, since it also involves learning such a map-
ping function. In our implementation, the encoder and de-
coder are composed of four residual blocks for convolution
and up-convolution. Each residual block has three convolu-
tion, two batchNorm and two leakyReLU layers. The model
is trained with stochastic gradient descent with 0.005 learning
rate. More details can be found from our GitHub repo.

4.2. Model Input

We use CQT [24] to represent the input audio, since it adopts
a log frequency scale that better aligns with our perception of
pitch. CQT also provides better frequency resolution in the
low-frequency part, which helps detect the fundamental fre-
quencies. For the convenience of training with mini-batches,
each audio clip in the training set is divided into 10-second
segments. We compute CQT by librosa [25], with 16 kHz
sampling rate, 512-sample hop size, and 88 frequency bins.

5. EXPERIMENT

5.1. Ablation Study

We report two sets of experiments for frame-level instrument
recognition. In the first experiment, we compare the proposed
multitask learning method with its single-task versions, using
two non-overlapping subsets of MuseScore as the training and
test sets. Specifically, we consider only the 9 most popular in-
struments1 and run a script to pick for each instrument 5,500
clips as the training set and 200 clips as the test set. We con-
sider three ablated versions here: using the U-net architecutre

1Piano, acoustic guitar, electric guitar, trumpet, sax, violin, cello & flute.
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Method Training set Piano Guitar Violin Cello Flute Avg
[16] YouTube-8M [26] 0.766 0.780 0.787 0.755 0.708 0.759
[13] Training split of ‘MedleyDB+Mixing Secrets’ [13] 0.733 0.783 0.857 0.860 0.851 0.817
[14] MuseScore training subset 0.690 0.660 0.697 0.774 0.860 0.736

Ours MuseScore training subset 0.718 0.819 0.682 0.812 0.961 0.798

Table 3. AUC scores of per-second instrument recognition on the test split of ‘MedleyDB+Mixing Secrets’, for 5 instruments.
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Fig. 3. The predicted pianoroll (best viewed in color) for
the first 30 seconds of three real-world music. We paint dif-
ferent instruments with different colors: Black—piano, Pur-
ple—guitar, Green—violin, Orange—cello, Yello—flute.

shown in Fig. 1 to predict the pianoroll with only Lroll, to
predict directly the instrument roll (i.e. only considering Li),
and to preidct directly the pitch roll (i.e. only Lp).

Result shown in Table 2 clearly demonstrates the superior-
ity of the proposed multitask learning method over the single-
task counterparts, especially for instrument prediction. Here,
we use mir eval [27] to calculate the ‘pitch’ and ‘pianoroll’
accuracies. For ‘instrument’, we report the F1-score.

5.2. Comparison with Existing Methods

In the second experiment, we compare our method with three
existing methods [13, 14, 16]. Following [13], we take 15
songs from MedleyDB and 54 songs from Mixing Secret as
the test set, and consider only 5 instruments (see Table 3).
The test clips contain instruments (e.g., singing voice) that are
beyond these five. We evaluate the result for per-second in-
strument recognition in terms of area under the curve (AUC).

As shown in Table 3, these methods use different training
sets. Specifically, we retrain model [14] using the same train-
ing subset of MuseScore as the proposed model. The model
[16] is trained on the YouTube-8M dataset [26]. The model
[13] is trained on a training split of ‘MedleyDB+Mixing Se-

cret’, with 100 songs from each of the two datasets. The
model [13] therefore has some advantages since the training
set is close to the test set. The result of [16] and [13] are from
the authors of the respective papers.

Table 3 shows that our model outperforms the two prior
arts [14,16] and is behind model [13]. We consider our model
compares favorably with [13], as our training set is quite dif-
ferent from the test set. Interestingly, our model is better at the
flute, while [13] is better at the violin. This might be related
to the difference between the real and synthesized sounds for
these instruments, but future work is needed to clarify.

5.3. Multi-pitch Streaming

Finally, Fig. 3 demonstrates the predicted pianorolls for the
first 30 seconds of three randomly-selected real-world songs.2

In general, the proposed model can predict the notes and in-
struments pretty nicely, especially for the second clip, which
contains only a guitar solo. This is promising, since the model
is trained with synthetic audio only. Yet, we also see two lim-
itations of our model. First, it cannot deal with sounds that
are not included in the training data—e.g., for the 5th–10th
seconds of the third clip, our model mistakes the piano for
the flute, possibly because the singer hums in the meanwhile.
Second, it cannot predict the onset times accurately—e.g., the
violin melody of the first clip actually plays the same note for
several times, but the model mistakes them for long notes.

6. CONCLUSION

In this paper, we have presented a new synthetic dataset and
a multitask learning method that models pitch and timbre
jointly. It allows the model to predict instrument, pitch and
pianorolls representation for each time frame. Experiments
show that our model generalizes well to real music.

In the future, we plan to improve the instrument recogni-
tion by re-synthesizing the MIDI files from Musescore dataset
to produce more realistic instrument sound. Moreover, we
also plan to mix the singing voice clips from [1] with our
training data (for data augmentation) to deal with singing
voices.

2The three songs are, from top to bottom: All of Me violin & guitar
cover (https://www.youtube.com/watch?v=YpYQh7eQULc), Ocean by Pur-
dull (https://www.youtube.com/watch?v=5Lb9GvEO-sA) and Beautiful by
Christina Aguilera (https://www.youtube.com/watch?v=eAfyFTzZDMM).
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