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ABSTRACT

This paper proposes a Bitwise Gated Recurrent Unit (BGRU) net-
work for the single-channel source separation task. Recurrent Neu-
ral Networks (RNN) require several sets of weights within its cells,
which significantly increases the computational cost compared to the
fully-connected networks. To mitigate this increased computation,
we focus on the GRU cells and quantize the feedforward procedure
with binarized values and bitwise operations. The BGRU network
is trained in two stages. The real-valued weights are pretrained and
transferred to the bitwise network, which are then incrementally bi-
narized to minimize the potential loss that can occur from a sud-
den introduction of quantization. As the proposed binarization tech-
nique turns only a few randomly chosen parameters into their binary
versions, it gives the network training procedure a chance to gen-
tly adapt to the partly quantized version of the network. It eventually
achieves the full binarization by incrementally increasing the amount
of binarization over the iterations. Our experiments show that the
proposed BGRU method produces source separation results greater
than that of a real-valued fully connected network, with 11-12 dB
mean Signal-to-Distortion Ratio (SDR). A fully binarized BGRU
still outperforms a Bitwise Neural Network (BNN) by 1-2 dB even
with less number of layers.

Index Terms— Speech Enhancement, Recurrent Neural Net-
works, Gated Recurrent Units, Bitwise Neural Networks

1. INTRODUCTION

Neural network-based approaches to source separation tasks have
been becoming more prevalent [1, 2, 3]. Fully connected deep neu-
ral networks (DNN) have shown to be capable of learning complex
mapping functions from a large set of noisy signals and their corre-
sponding ideal binary mask (IBM) target outputs [4, 5, 6]. Recurrent
neural networks (RNN), which are structured to be more effective in
applications involving sequential or temporal data, have also shown
to excel in the same task [7, 8, 9, 10, 11]. The RNN is able to attain
the superior performance by utilizing a shared hidden state and gates
within its hidden cells that guide the memory and learning over a
sequence of inputs [12]. The most practical method to train RNNs
is with truncated Backpropagation Through Time (BPTT) [13]. This
bounded-history approximation method simplifies computation by
limiting itself to a fixed scope of T timesteps [14].

The most efficient cell structure that is robust to the gradient
vanishing problem is the Gated Recurrent Unit (GRU) cell [15]. The
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computation within each GRU cell is:

r(l)(t) = σ
(
W(l)

r x(l−1)(t) + U(l)
r h(l)(t− 1)

)
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(
W(l)

z x(l−1)(t) + U(l)
z h(t− 1)

)
h̃(l)(t) = φ
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h x(l−1)(t) + U

(l)
h

(
r(l)(t)� h(l)(t− 1)

))
h(l)(t) = z(l)(t)� h(l)(t− 1) + (1− z(l)(t))� h̃(l)(t)

(1)

where l = {1, . . . , L + 1} denotes the layer index and t =

{1, . . . , T} is the time index. rt, zt, h̃t, and ht are reset gate,
update gate, candidate hidden state, and updated hidden state re-
spectively all of dimension RK(l)

with K(l) as the number of units
at layer l. W

(l)
r ∈ RK(l)×K(l−1)

and U
(l)
r ∈ RK(l)×K(l)

are
the weight matrices for the input x(l)(t) and previous hidden state
h(l)(t − 1) at the reset gate. Similarly, Wz , Uz , Wh, and Uh

are corresponding weights for the update gate and candidate state.
The σ and φ refer to the logistic sigmoid and hyperbolic tangent
activation functions. The bias term is omitted for simplicity. Note
that h(l)(t) is fed to the next layer as an input, x(l)(t).

For a single feedforward step, the RNN requires multiple sets of
weights and performs operations in (1) for T timesteps. With deeper
RNNs, the computational cost rises rapidly in terms of K and L.
This paper presents an efficient method to reduce the computational
and spatial complexity of the GRU network for the source separa-
tion problem while maintaining high performance results. We ex-
tend from the idea of Bitwise Neural Networks (BNN) [16] [17] and
low-precision RNNs [18]. The model we propose is a Bitwise GRU
(BGRU) network that reduces network complexity by re-defining the
originally real-valued inputs and outputs, weights, and operations in
a bitwise fashion. By limiting the network to bipolar binary values,
the space complexity of the network can be significantly reduced.
In addition, all real-valued operations during the feedforward proce-
dure can be replaced with bitwise logic, which further reduces both
spatial and time complexity [19, 20, 21, 22].

Transforming real-valued weights into bipolar binaries results in
heavy quantization loss [23, 24]. To alleviate this effect, the weights
are converted into binary values through a gentle training proce-
dure. In this paper, we introduce an incremental training method
for weights of the BGRU network that holds onto the quality of the
source separation model. Experimental results for single-channel
source separation tasks show that the BGRU model shows incremen-
tal and predictable loss depending on the amount of binarization and
still performs better than a real-valued Fully-Connected Network
(FCN).
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2. BITWISE GATED RECURRENT UNITS (BGRU)

2.1. Background: Bitwise Neural Networks

Binarization has been explored as a method of network compression.
BinaryConnect [17], binarized neural networks [19], trained ternary
quantization [25], and Bitwise Neural Networks (BNN) [26] have
implemented a binarized or ternarized neural network in bipolar bi-
naries (with zeros in the ternarized case) for network compression.
They emphasize that replacing real-valued operations with bitwise
versions greatly reduces the network’s complexity. In particular, the
BNN training process is assisted by initializing the binarized net-
work with pretrained weights. The weights are compressed in a real-
valued network with the hyperbolic tangent activation function in
order to better approximate their binary versions. Further quantiza-
tion is performed in the BNN, where the inputs are quantized using
Quantization-and-Disperson, which uses Lloyd-Max’s quantization
to convert each frequency magnitude of the noisy input spectrum into
4 bits with bipolar binary features [27]. In the domain of source sep-
aration, BNN’s have been applied by predicting Ideal Binary Masks
(IBM) as target outputs [16].

While the BNN significantly reduces the space and time com-
plexity of the network, the conversion from real-values to bipolar
binaries inevitably produces quantization error. One method to re-
duce this penalty is the concept of sparsity [16]. Sparsity can be
introduced to bitwise networks by converting the pretrained weights
with smaller values to 0’s. The threshold for determining the sparsity
is calculated with a predefined boundary β. The relaxed quantization
process for a weight element w is:

w̄ =


+1 if w > β

−1 if w < −β
0 otherwise

(2)

where w̄ represents the binarized variable. Another way to miti-
gate the quantization error is by multiplying a scaling factor µ to the
bipolar-binarized weights, so that the quantized values approximate
the original values more closely [25].

2.2. Feedforward in BGRU

2.2.1. Notation and setup

For the following sections of the paper, we specify discrete variables
with a bar notation, i.e. x̄. Depending on the context, this could be
a binary variable with 0 and 1 (e.g. gates), a bipolar binary variable
with +1 and −1 (e.g. binarized hidden units), or a ternary variable
(e.g. sparse bipolar binary weights). The binary versions of logistic
sigmoid and hyperbolic tangent activation functions are:

σ̄(x) =
sgn(x) + 1

2
∈ {0, 1}, φ̄(x) = sgn(x) ∈ {−1,+1} (3)

respectively where sgn(x) is a sign function [19, 26].

2.2.2. The feedforward procedure

In the BGRU, the feedforward process is defined as follows:
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z h̄(l)(t− 1)

)
¯̃
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W̄
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h x̄(l−1)(t) + Ū

(l)
h

(
r̄(l)(t)� h̄(l)(t− 1)

))
h̄(l)(t) = z̄(l)(t)� h̄(l)(t− 1) + (1− z̄(l)(t))� ¯̃

h(l)(t)

(4)

The product between two binarized values (e.g. between the (i, j)-
th element of W̄(l)

r and the j-th element of x̄(l−1)(t)) is equivalent
to the XNOR operations, a cheaper binary operation than the corre-
sponding floating-point operation. Also, the use of sign functions φ̄
and a hard step function σ̄ in place of the hyperbolic tangent and sig-
moid functions also expedite the process because they can be usually
implemented by a pop counter.

2.2.3. Scaled sparsity and Bernoulli masks

We define two types of masks that are applied on various parts of
the network. The scaled sparsity mask is a two-in-one solution to
introduce both scaling parameters and sparsity into weights during
the binarization process. To binarize the weight matrices the scaled
sparsity mask B is created using a predefined sparsity parameter
0 < ρ < 1. First, we find a per-layer cutoff value β and the scal-
ing parameter µ that meet the following equations:

S = {(i, j) : |W (l)
i,j | > β}, |S| = K(l−1)K(l)ρ

µ =
1

|S|
∑

(i,j)∈S

|W (l)
i,j |,

(5)

where S is the set of weight indices whose absolute values are larger
than the cutoff value and |S| denotes the number of such weights.
Therefore, for a given sparsity value ρ, we first sort the weights in
their absolute values and then find the cutoff that results in S with
the predefined size. Using β and µ, we set the mask elements as
follows:

Bi,j =

{
µ if |Wi,j | > β

0 otherwise
(6)

The other type of mask is a random Bernoulli matrix C with a
parameter 0 < π < 1 as the amount of binarization. The value of
π is initially chosen as a small value (e.g. 0.1 for 10% binarization)
and gradually increased up to 1.0, which means the network is com-
pletely binarized. The created masks are applied on weights W to
create the partly binarized matrix Ŵ:

Ŵ =
(
φ̄(W)�B

)
�C + φ(W)� (1−C). (7)

The purpose of B with µ values is to lessen the quantization er-
ror from the binarization. The φ̄ operator will transform all values
into bipolar binary values, which would be too intensive of a tran-
formation because the distribution of the first round weights are all
relatively close to 0. Thus, by multiplying the remaining nonzero
bipolar values after applying sparsity with µ, the values are scaled
down to the average value of the non-sparse portion, which is a bet-
ter representative for the nonzero elements. Note that feedforward is
still bitwise thanks to the symmetry of B and by skipping zeros.

The Bernoulli mask C enables a gradual transition from real-
valued weights and operations to bitwise versions. This mask is ap-
plied on the bitwise and real-valued elements in a complementary
way to control the proportion of binarization in the network. Ŵ in
(7) is binarized only partly with the proportion set by π. Note that
for the real-valued weights we are using a tanh compressed version
φ(W) for the purpose of regularization (see Section 2.3.1 for more
details).

C is used to control the binarization of the other network ele-
ments such as gates and hidden units, too. For the candidate hidden
units ¯̃

h, for example, the activations are performed as:

̂̃
h =

¯̃
h�C + h̃� (1−C), (8)
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The gates are also partially binarized in this way. The mask C is
generated at each iteration for the weights as in (7) and then at each
timestep for the activation functions of GRU cells as in (8). This
ensures that the gradients of the bitwise terms are evenly distributed
gradually for all weights at each levels of π. Without even distri-
bution, certain elements of the graph that do not participate in the
bitwise procedure begin focusing on compensating for the quantiza-
tion loss from the other bitwise elements. This needs to be avoided
since as π is increased to 1.0 these elements need to be quantized
eventually.

2.3. Training BGRU Networks

The objective is to accept binarized mixture signal inputs and pre-
dict the corresponding IBMs. The inputs are binarized using the
Quantization-and-Dispersion technique [26], and the target outputs
are bipolar binary IBM predictions which are later converted to 0’s
and 1’s for the source separation task. We follow the typical two-
round training scheme from BNNs, too.

2.3.1. First round: Pretraining φ-compressed weights

The GRU network is first initialized with real-valued weights and
then trained on quantized binary inputs. During training, the weights
are wrapped with the hyperbolic tangent activation function, φ. This
has the effect of bounding the range of weights between −1 and +1
as well as regularization. In the second round, the sign function,
φ̄ is applied on the weights instead, hence the first round network
can be perceived as its softer version. For example, the feedforward
procedure in (1) for only the hidden candidate state at layer l and
timestep t becomes:

h̃(l)(t)=φ
(
φ
(
W

(l)
h

)
x(l−1)(t)+φ

(
U

(l)
h

)(
r̄(l)(t)� h̄(l)(t−1)

))
(9)

The φ-compressed weights are applied similarly for the reset and
update gates.

Backpropagation: With the introduction of φ on the weight ma-
trices, the derivative with respect to φ is added onto the backpropa-
gation due to the chain rule. For example, the gradients for (9) are
computed as:

δh̃(t) = δ(l)(t)� (1− z(t))�
(
1− h̃(l)(t)2

)
∇W(l)

h =
( T∑

t=0

δh̃(t) ·
(
x(l−1)(t)

)>)� (1− φ2(W(l)
h

))
(10)

∇U(l)
h =

( T∑
t=1

δh̃(t) ·
(
r̄(l)(t)� h̄(l)(t− 1)

))
�
(

1− φ2(U(l)
h

))
where δ(l)(t) is the backpropagation error for the training sample at
layer l and timestep t. The gradients are similarly defined for the
weights in the gates.

2.3.2. Second round: BGRU

The BGRU network is initialized with the real-valued weights from
the first round, which are pretrained to be optimal for the source
separation task. The real-valued weights are saved for the backprop-
agation step and used to construct bitwise weights for the feedfor-
ward procedure using both the mean-scaled sparsity mask B and
Bernoulli mask C. The bitwise activation functions, σ̄ and φ̄ are
applied during the feedforward as well. Again as an example, with

the introduction of the masks and bitwise functions, the feedforward
step for the hidden candidate state becomes:

Ŵ
(l)
h = (φ̄(W

(l)
h )�B)�C + φ(W

(l)
h )� (1−C)

Û
(l)
h = (φ̄(U

(l)
h )�B)�C + φ(U

(l)
h )� (1−C)

V = Ŵ
(l)
h x(l−1)(t) + Û

(l)
h

(
r̄(l)(t)� h̄(l)(t− 1)

)
̂̃
h
(l)

(t) = φ̄(V)�C + φ(V)� (1−C)

(11)

where V is an intermediary term. The Bernoulli parameter π is in-
cremented gradually to determine C until the network is completely
binarized at π = 1.0.

Backpropagation: The derivatives of non-differentiable activa-
tion functions are overwritten with the derivatives of their relaxed
counterparts such that φ̄′ = φ′ and σ̄′ = σ′. This simplifies the
gradients for (11). The gradients are computed as (10) with an addi-
tional factor for the masks which are:

∇W(l)
h = ∇W(l)

h � (B�C + (1−C))

∇U(l)
h = ∇U(l)

h � (B�C + (1−C))
(12)

The gradients are computed similarly for the gates. The calculations
in (12) show that the network is the same as the first round network
except with the addition of masking factors. Only the real-valued
weights are updated with the gradients during training.

3. EXPERIMENTS

3.1. Experimental Setups

For the experiment, we randomly subsample 12 speakers for train-
ing and 4 speakers for testing from the TIMIT corpus. For both
subsamples, we select half of the speakers as male and the other
half as female. There are 10 short utterances per speaker recorded
with a 16kHz sampling rate. Each utterances are mixed with 10
different non-stationary noise signals with 0 dB Signal-to-Noise Ra-
tio (SDR), namely {birds, casino, cicadas, computer keyboard, eat-
ing chips, frogs, jungle, machine guns, motorcycles, ocean} [28].
In total, we have 227,580 training examples and 81,770 test exam-
ples from 1,200 and 400 mixed utterances, respectively. We apply a
Short-Time Fourier Transform (STFT) with a Hann window of 1024
and hop size of 256. To quantize the spectra into bipolar binaries, we
apply a 4-bit QaD procedure and convert them into n × (4 × 513)
dimension matrices. These vectors are used as inputs to the BGRU
systems. The truncated BPTT length used was T = 50. We found
ρ = 0.8 to perform well in our experiment. We used the Adam
optimizer for both first and second rounds with the same beta pa-
rameters, β1 = 0.4 and β2 = 0.9. Minibatch size is set as 10 for 10
mixed utterances constructed from 1 clean signal mixed with the 10
noise signals. We train two types of networks that predict the IBMs
with respect to the noisy quantized input:

• Baseline with binary input: The baseline network is constructed
with a single GRU layer with K = 1024 units. The inputs to the
network are 4 × 513 dimension 4-bit QaD vectors and predicted
outputs are 513 dimension IBMs. We use the first round training
algorithm to train the baseline network. For regularization, we
apply dropout rate of 0.05 for the input layer and 0.2 for the GRU
layers.

• The proposed BGRU: We initialize the weights with the pretrained
weights and use the second round training algorithm to train the
BGRU network. We increase the π parameter by 0.1 starting from
0.1 to 1.0. The learning rates are reduced for each increase in π.
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Fig. 1. Second round testing results on incremental levels of π. Figures (a) and (b) show the effects of running different number of iterations.

Table 1. Speech denoising performance of the proposed BGRU-
based source separation model compared to FCN, BNN, and GRU
networks

Systems Topology SDR STOI

FCN with original input 1024×2 10.17 0.7880
2048×2 10.57 0.8060

FCN with binary input 1024×2 9.80 0.7790
2048×2 10.11 0.7946

BNN 1024×2 9.35 0.7819
2048×2 9.82 0.7861

GRU with binary input 1024×1 16.12 0.9459

BGRU

π=0.1

1024×1

15.50 0.9393
π=0.2 15.17 0.9361
π=0.3 14.90 0.9324
π=0.4 14.58 0.9292
π=0.5 14.32 0.9252
π=0.6 14.02 0.9217
π=0.7 13.66 0.9174
π=0.8 13.30 0.9104
π=0.9 12.70 0.9019
π=1.0 11.76 0.8740

3.2. Discussion

Table 1 shows results for the BGRU along with other systems for
comparison. The metrics displayed are Signal-to-Distortion Ratio
(SDR) [29] and Short-Time Objective Intelligibility (STOI) [30]. At
each increase in π, there is a distinct drop in SDR and STOI due
to the loss in information as we increase the number of elements
undergoing binarization. Since the initial weights transferred from
the first round are optimal, we restrict the weights from updating
too drastically by dampening the learning rate at each increase in π.
We did not observe substantial difference from reducing the learning
rate before π = 0.8, however the performance becomes sensitive as
the rate of binarization nears 1. In Figure 1(a) it can be seen that
from π = 0.8 the performance begins to decrease more than during
previous π values.

The BGRU network is trained for an extended number of itera-
tions so it propagates the corrections and adjusts to the quantization
injected into the network. We trained 1000 epochs for each π values
except at π = 1.0. Figure 1(a) shows that this many iterations is not
always beneficial within the same session with a fixed π, because

SDR improvement becomes stagnant and even starts to drop. How-
ever, in this way the network can prevent a greater drop in perfor-
mance at the next increase in π. At π = 1.0, we only train for 100
epochs and perform early stopping because the network is less ro-
bust and degrades in performance after more than 100 epochs. Also,
since the network has finished training for the source separation task
at π = 1.0, further training is unnecessary. On the contrary, Fig-
ure 1(b) shows that training for less number of iterations, e.g. 100
epochs, produces a greater drop at each increment of π.

The drop in performance from a real-valued network to a bitwise
version is quite comparable between a FCN with BNN and GRU
with BGRU. The loss is much greater in the BGRU network (16.12
dB to 11.76 dB SDR) than in the case of BNN (10.11 dB to 9.82 dB
SDR). Yet, the performance of a single-layer fully bitwise BGRU
network with 1024 units (11.76 dB SDR and 0.8740 STOI) is still
greater than that of a double-layer BNN with 2048 units (9.82 dB
SDR and 0.7861 STOI), and also greater than that of a unquantized
double-layer FCN with real-valued inputs and 2048 units (10.57 dB
SDR and 0.8060 STOI). We discuss the space complexity of the
BGRU network compared to a FCN and BNN. Considering that a
GRU layer contains 3 sets of weights, the single layer BGRU net-
work contains 3 × (1024 × 1) number of weights. This number is
still less than a FCN or BNN of topology 2048×2. We introduced a
real-valued scaling factor µ, but it reduces down to bipolar binaries
once training is done, so it does not add additional costs.

In the future, we plan to extend the network structure to deeper
ones. Also, more scheduled annealing of the π values is another
option to investigate.

4. CONCLUSION

In this paper, we proposed an incremental binarization procedure to
binarize a RNN with GRU cells. The training is done in two rounds,
first in a weight compressed network and then in an incrementally
bitwise version with the same topology. The pretrained weights of
the first round are used to initialize the weights of the bitwise net-
work. For the BGRU cells, we redefined the feedforward procedure
with bitwise values and operations. Due to the sensitivity in train-
ing the BGRU network, the bitwise feedforward pass is performed
gently using two types of masks that determine the level of sparsity
and rate of binarization. With 4-bit QaD quantized input magnitude
spectra and IBM targets, the BGRU at full binarization performs well
for the speech denoising job with a minimal computational cost.

379



5. REFERENCES

[1] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study
on speech enhancement based on deep neural networks,” IEEE
Signal processing letters, vol. 21, no. 1, pp. 65–68, 2014.

[2] P. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis,
“Joint optimization of masks and deep recurrent neural net-
works for monaural source separation,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 23, no.
12, pp. 2136–2147, 2015.

[3] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel au-
dio source separation with deep neural networks.,” IEEE/ACM
Trans. Audio, Speech & Language Processing, vol. 24, no. 9,
pp. 1652–1664, 2016.

[4] Y. Wang and D. Wang, “Towards scaling up classification-
based speech separation,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 7, pp. 1381–
1390, 2013.

[5] J. Le Roux, J. R. Hershey, and F. Weninger, “Deep NMF for
speech separation,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 66–70.

[6] E. M. Grais, M. U. Sen, and H. Erdogan, “Deep neural net-
works for single channel source separation,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 3734–3738.

[7] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux,
“Phase-sensitive and recognition-boosted speech separation
using deep recurrent neural networks,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 708–712.

[8] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux,
J. R. Hershey, and B. Schuller, “Speech enhancement with
LSTM recurrent neural networks and its application to noise-
robust ASR,” in International Conference on Latent Variable
Analysis and Signal Separation. Springer, 2015, pp. 91–99.

[9] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller,
“Discriminatively trained recurrent neural networks for single-
channel speech separation,” in Proceedings 2nd IEEE Global
Conference on Signal and Information Processing, GlobalSIP,
Machine Learning Applications in Speech Processing Sympo-
sium, Atlanta, GA, USA, 2014.

[10] Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey,
“Single-channel multi-speaker separation using deep cluster-
ing,” arXiv preprint arXiv:1607.02173, 2016.

[11] Z. Chen, S. Watanabe, H. Erdogan, and J. R. Hershey, “Speech
enhancement and recognition using multi-task learning of long
short-term memory recurrent neural networks,” in Sixteenth
Annual Conference of the International Speech Communica-
tion Association, 2015.

[12] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE trans-
actions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[13] R. J. Williams and J. Peng, “An efficient gradient-based al-
gorithm for on-line training of recurrent network trajectories,”
Neural computation, vol. 2, no. 4, pp. 490–501, 1990.

[14] I. Sutskever, Training recurrent neural networks, University
of Toronto Toronto, Ontario, Canada, 2013.
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