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ABSTRACT

A multichannel extension of nonnegative matrix factorization
(NMF) for audio/music data, called multichannel NMF (MNMF),
has been proposed by Sawada et al. [“Multichannel extensions of
non-negative matrix factorization with complex-valued data,” /EEE
Trans. ASLP, vol. 21, no. 5, pp. 971-982, May 2013]. How-
ever, conventional MNMF algorithms have a major drawback of a
heavy computational load due to numerous matrix operations, such
as matrix inversions and matrix multiplications. Here we propose
FastMNMF, accelerated algorithms for the MNMF based on joint
diagonalization of matrices. It is well known that, for diagonal
matrices, matrix operations reduce to mere scalar operations on
diagonal entries. Because of this property, the joint diagonalization
results in a significantly reduced computational load compared to
conventional MNMF algorithms. This makes the proposed FastM-
NMEF even applicable to a situation with a large database or restricted
computational resources.

Index Terms— Nonnegative matrix factorization, joint diago-
nalization, source separation, microphone arrays.

1. INTRODUCTION

Multichannel NMF (MNMF) [1, 2] is a multichannel extension of
the nonnegative matrix factorization (NMF) [3-5] for audio/music
data. Unlike the conventional, single-channel NMF, the MNMF ex-
ploits not only spectral information but also spatial one. This makes
it possible to group together basis components corresponding to the
same source to realize source separation, which is challenging in
the single-channel NMF [6, 7]. On the other hand, as compared
with conventional source separation [8—10], the spectral information
allows the MNMF to naturally circumvent a permutation problem
among frequency bins [10, 11], which is problematic in many tech-
niques such as frequency-domain independent component analysis
(ICA).

A main drawback of conventional multichannel NMF (MNMF)
algorithms is a heavy computational load. Specifically, these algo-
rithms require numerous matrix operations of complexity O(M?®)
(M: matrix order), such as matrix inversions and matrix multipli-
cations. In particular, they require matrix inversion at each time-
frequency point and each iteration. This results in a significant com-
putational load, because the number of time-frequency points is typ-
ically tens of thousands or larger.

To overcome this drawback, here we propose FastMNMF', accel-
erated algorithms for the MNMF in [2] based on joint diagonaliza-
tion. For diagonal matrices, matrix operations such as matrix inver-
sions and matrix multiplications are nothing but scalar operations on
diagonal entries of complexity O(M). Owing to this property, the
joint diagonalization leads to a significantly reduced computational
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load compared to conventional MNMF algorithms. Indeed, source
separation experiments showed that the FastMNMF was up to 35
times faster than a conventional MNMF algorithm without much de-
grading the separation performance.

2. CONVENTIONAL MULTICHANNEL NMF

This section describes formulations and conventional algorithms of
the MNMF [2]. Section 2.2 treats a basic MNMF formulation, and
Section 2.3 an extended formulation for source separation. Before
that, we first describe observed data in Section 2.1.

2.1. Observed Data

Suppose L source signals are mixed and observed by M micro-
phones, where the number of sources, L, is assumed to be given.
These observed signals are represented by z145,...,2ami; € Cin
the STFT domain with ¢ = 1, ..., I being the frequency-bin index
and 7 = 1,...,J the frame index. The observed signals are used to
compute an observed covariance matrix

Xij = Xij%ij, ()

T .
where x;; 1= [acuj T ]\/Iij} . In this paper, 7 denotes trans-
position, and 7 Hermitian transposition.

2.2. Conventional Multichannel NMF: Basic Formulation

In the basic MNMF formulation, X; in (1) is approximated by the
sum of K (> L) components

Xij = Zi;l tirvri Hig, 2)

where ¢k, vij, and H;j are unknown parameters to be estimated.
The components ¢;,vi; Hir in (2) are called basis components with
k =1,..., K being their index. Here, ¢;; (> 0) models the power
spectrum of the kth basis component, vy; (> 0) its activation in
the jth frame, and H;;, (Hermitian positive semidefinite) its spatial
characteristics, such as the location of the corresponding source [9].
The (m1, m2) entry of H;j, is a scaled cross-spectrum between the
math and math microphones of the kth basis component.

The MNMF problem is formulated as one of finding the parame-
ters such that X; 5 1n (2) “best” approximates X;;. One way of doing
this is to minimize a cost function

S D d(Xay, X)) = 30y S (X, Yoy tivv Hg),
3)
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where d(X;,X;) is an error of fit between X;; and X;;. For
brevity, here we focus on a multichannel Itakura-Saito diver-
gence' [12-14] d(X,X) = —Indet(XX 1) + tr(XX 1) — M,
which has been empirically shown to be effective [2].

In [2], an MNMF algorithm was proposed, which minimizes
(3) by alternating the following updates called multiplicative update
rules after initializing the parameters.

Xij = S0 tinvr; Hir “
J &—1 1
L U4 tr X1 X1XL H;
tik < tik 2o Jk] X = —]1  Ha) %)
Z]‘:l Vkj tr(Xij sz)
I o1 & —1
i tr XL XlXI H,;
Vkj < Vkj 21_1 Ik ( 2 7J1 . k) (6)
Zi:l tik tr(Xij Hlk)
A — Z}‘]:1 Uiji_jl (7)
B, + Hik(z;lzl oy X X X Hg ®)
Hi, — A '#Bix ©

In (9), A#B denotes the geometric mean of Hermitian positive def-
inite matrices A and B [15,16]. See [2] for an algorithm for com-

puting (9).
2.3. Conventional Multichannel NMF: Source Separation

This subsection treats the extended MNMF formulation for source
separation.

To realize source separation, basis clustering, i.e., clustering of
the basis components ¢;,vi; Hix into sources is crucial. The spatial
information encoded in H;; can be exploited for this basis cluster-
ing. To this end, H;j. is parametrized as

Hi, = Zilvzl anGiny (10)

where 2, and G, are unknown parameters to be estimated, and
N the assumed number of sources®. Here, zjn, (> 0) denotes the
responsibility of the nth source for the kth basis component, and its
estimation can be thought of as the basis clustering. The matrix G,
(Hermitian positive semidefinite) models the spatial characteristics
of the nth source signal.

Plugging (10) into (2), we obtain the following extended MNMF
model:

Xij = 30 (25, Zentinvis) Gin. (11)

In this case, the MNMF problem is formulated as one of finding
the parameters t;x, Vrj, Zkn, and Gin such that the following cost
function is minimized:

Sy 2y (X5, X)
= 3 X d(Xag, o0l (ks Zkntikvrg)Gin). (12)

Once the parameters have been estimated, they can be used to es-
timate the source signals y;;,. For example, this can be done by
multichannel Wiener filtering as follows:

Vijn = (ZkKZI antikvkj)Gmeleij

! Also known as a log-determinant divergence or Stein’s loss.

’In this paper, we distinguish V and L: N denotes the assumed number
of sources, whereas L the actual number. Since L is given, /N can be set at
N = L, but does not have to. In an experiment in Section 4, for example, N
is initialized so that N > L, and then decreased gradually down to N = L.

(13)
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Table 1. The number of matrix operations of complexity O(M?)
per iteration with M being the matrix order. “A~!” stands for ma-
trix inversions, “AB” matrix multiplications, and “A ™ L4 B” matrix
geometric means in (9) and (19).

conventional MNMF algorithms [2]

basic formulation  source separation ~ FastMNMF
(Section 2.2) (Section 2.3)
AT! 1J 1J I(M+1)
AB 2IK 2IN 0
A'#4B 1K IN 0
total I(BK +J) I(3N +J) I(M+1)

with X;; computed as in (11).

In [2], an algorithm for this extended MNMF formulation was
also proposed, which minimizes (12) by alternating the following
updates after initializing the parameters.

Hi, « 20 26nGin (14)
Xi]' ’ tik, and Vkj updated by (4), (5), and (6) (15)
I J &—1 &1
. o tik Uk tr Xz X1 )(7 Gin
Zkn < Zkn 2o ?]71 Jk ks L jl 2 ) (16)
2o Zj:l tinvi; (X5 Gin)
Qin < Zf:l Zintik Z;-le Uij;jl (17)
Rin Gm(szzl Zkntik Z_;Izl Uiji_jlxijxi_jl)(}m (18)
Gin < Q;, #Rin (19)

2.4. Drawback of Conventional Multichannel NMF

A major drawback of the conventional MNMF algorithms is a heavy
computational load. Indeed, these algorithms require numerous ma-
trix operations of complexity O(M?). Table 1 shows the number
of such matrix operations per iteration®>. We see that the number of
matrix inversions depends on the number of time-frequency points,
1J, which is typically tens of thousands or larger.

For example, consider the algorithm in Section 2.3 with M = 3,
N = 3,1 = 513, and J = 904, which corresponds to an experi-
mental condition in Section 4. In this case, the algorithm requires
1J = 463752 matrix inversions, 2/ N = 3078 matrix multiplica-
tions, and I/ N = 1539 matrix geometric means in each iteration.

See Section 4 for evaluation in terms of the computation time.

3. FASTMNMF: ACCELERATED ALGORITHMS FOR THE
MULTICHANNEL NMF
3.1. Our Approach: Joint Diagonalization

To overcome the above drawback, here we propose FastMNMF, ac-
celerated algorithms for the MNMF.

The proposed FastMNMF exploits the well-known fact that, for
diagonal matrices, matrix operations such as matrix inversions and
matrix multiplications are nothing but scalar operations on diagonal
entries, which are only of complexity O(M). For example,

- art 0

= . (Q0)

0 anm 0 ay
3 X IX. . X! — X x (X 1x, ) H
Note that X" X;; X0 = X2 x5 (X, x45)" can be computed

from X;l and x;; without matrix multiplications.

(6%]) 0




With this in mind, consider for example the algorithm in Sec-
tion 2.2. If H;1,..., H;x were all diagonal, the matrix inversion
X;jl = (Z,{;l tixvr;H;p) ! for instance would be mere inversion
of the diagonal entries as in (20). However, the off-diagonal entries
of H;;, are rarely zero in practice, because the basis components are
normally highly correlated between microphones.

This motivates us to consider joint diagonalization of the spatial
covariance matrices H;1, . . ., H;x in line with [17-20]. That is, we
consider transforming H;1, ..., H;x into some diagonal matrices
Hii, ..., Hix by asingle nonsingular matrix P; as

PAHP; = Hix.

1)

In this paper, we use bold calligraphic fonts (e.g., Hs1) to repre-
sent diagonal matrices. In signal-processing terms, this joint diago-
nalization corresponds to joint decorrelation of the K basis compo-
nents. Here it is paramount how to obtain matrices H,x and P; that
satisfy (21).

In the case with only K = 2 basis components, this can be re-
alized by solving a generalized eigenvalue problem as in [17, 18].
However, the restriction K = 2 largely limits the performance,
since tens of basis components are typically needed for high per-
formance [2].

To deal with the general case with an arbitrary K as in [19,20],
here we solve (21) for H;j, as

(22)

and estimate H;, and P; from the observed signals by minimizing
the multichannel Itakura-Saito divergence. This joint diagonaliza-
tion approach leads to a significantly reduced computational load
compared to the conventional MNMF algorithm in Section 2.2.

This joint diagonalization approach is also applicable to the al-
gorithm in Section 2.3, where G;1, . . ., G;n instead of H;1, ... , H;x
are jointly diagonalized.

3.2. FastMNMEF: Basic Formulation

The proposed FastMNMF for the basic MNMF formulation in Sec-
tion 2.2 alternates the following update rules after initializing the
parameters ¢k, Uk;, Hir, and P;. The derivation is omitted because
of space limitations.

X+ D(PFX;P)) (23)
X+ SN tiwvkg Han (24)
J L1 o1
ik tin ZJ—I j] (X . _Jl J k) ©5)
Zj:l vk tr( Xy Hir)
1 1
S iy i (X Xij Xy Hr) 26)
1
21{:1 tip (X5 Hir)
L1
A +— Z;']:l Vi X i 27)
L1 L1
Bir 'Hik(z;-]:l Vi X5 Xij Xy )Mk (28)
Hir <+ A # B (29)
[Pilm < ((1/7) 7_y Xig /[ X is)mm) T {PT) ] (30)
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Once the parameters have been obtained by the above algorithm,
H,;;. are obtained by (22).

We see that (24)—(29) have the same forms as (4)—(9), but
the matrices Xij, Xij, Hir, Aix, and B have been replaced
by the diagonal matrices X ;j, .5(1] Hir, Aix, and B This
has turned the matrix operations in (4)—(9) into ones on diagonal
matrices*, which are only of complexity O(M). Equation (30)
updates the matrix P; for the joint diagonalization, where [A]mn
denotes the (m,n) entry of a matrix A, and [A],, its mth col-
umn. Although (30) requires a few matrix inversions, this is not
a big issue because they are not required in each frame. Equation
(23) transforms X;; by P;, and replaces the resulting off-diagonal
entries by zeros, where D denotes the operator that replaces the
off-diagonal entries by zeros. Note that D(PX;;P;) can be com-
puted without matrix multiplications because D(PYX;;P;) =
diag(|([Pi]1) x5 %, . [([Pi]ar) x5 ).

As shown in Table 1, the number of matrix operations of com-
plexity O(M?) in the above FastMNMEF is only I(M + 1), which
is independent of the number of frames, J. This is in sharp contrast
to the conventional MNMF algorithm in Section 2.2, in which the
number of such matrix operations depends on the number of time-
frequency points, /.J. Note that matrix operations on diagonal matri-
ces were not counted in Table 1, because their complexity is O (M)
instead of O(M?).

For example, consider the example in Section 2.4. In this case,
each iteration of the above FastMNMEF requires only [(M + 1) =
2052 matrix inversions of complexity O(M®) and no matrix multi-
plications or matrix geometric means of complexity O(M?).

3.3. FastMNMF: Source Separation

The proposed FastMNMF for the extended formulation in Sec-
tion 2.3 alternates the following update rules after initializing the
parameters tix, Ukj, Zkn, Gin, and P;.

X i; updated by (23). (€2))
Hik < oy 2knGin (32)
Xj, tir, and vy, updated by (24), (25), and (26). (33)
o —1 ~—1
Zkn — 2k Zf:l Z'J'JZI Likvry 1 Xs; XijXi Gin) 34)
o n ~ —1
Zf:l Z_;’:l tirvn; tt(Xij Gin)
~—1
Qin = >oiy Zhnbin 11—y Vi X (35)
-1 -1
Rin < Gin(X e Zhntin Z‘j]:l v Xi; Xij X5 )Gin  (36)
Gin Q. #Rin 37
P, updated by (30). (38)

Once the parameters are obtained by the above algorithm, G;,, are
obtained by

Gin = (PGP (39)

Estimates y;;,, of the source signals y;;, are also obtained by (13).

Again, (32)—(37) have the same forms as (14)—(19), but the ma-

trices X5, Xij, Hix, Gin, Qin, and R, have been replaced by the

4The geometric mean .A;kl#Bik in (29) can be com-
puted from A;; and B;; in O(M), because A;kl#Bik =
diag(\/[Birl11/[Aikli1; - - -, V/[Birlaar [[Air]avn)-
diag(av1,...,apr) denotes the diagonal matrix with aq,...
its diagonal.

Here,
, Q) on



reverberation time RTg = 200ms

source 2

 E)

room size: 4.45m x 3.55m x 2.5m
height of microphones and loudspeakers: 1.2m

Fig. 1. Experimental setup.

diagonal matrices X;;, X’i]-, Hik, Gin, Qin, and R;p. The above
FastMNMF has the same computational complexity as the FastM-
NMF in Section 3.2 in terms of the number of matrix operations of
complexity O(M?).

3.4. Relation to Prior Work

The above joint diagonalization approach has already been applied to
a source separation method called full-rank spatial covariance anal-
ysis (FCA) [17-20], and, later but independently, to an unsupervised
learning method called correlated tensor factorization (CTF) [21].
These methods are related to but different from the MNMEF treated
in this paper.

Ikeshita et al. [22] have also proposed a joint diagonalization
based acceleration of the MNMF [2]. An assumption underlying
this method is that the source signals are sparse in the sense that at
most two of them are active at a time-frequency point. This allows
for joint exact diagonalization of the spatial covariance matrices for
each possible pair of source signals in line with [17,18,23]. How-
ever, source signals such as music parts often overlap in the time-
frequency domain, which may violate the above assumption. The
FastMNMEF in this paper resolves this issue by dropping such a spar-
sity assumption, while still realizing acceleration thanks to the joint
diagonalizability constraint (39) on the spatial covariance matrices.

Taniguchi ez al. [24] have proposed preprocessing for joint diag-
onalization using an unmixing matrix obtained by independent vec-
tor analysis (IVA) [25] to accelerate the MNMEF, where the number
of sources needs be equal to that of microphones (i.e., the even de-
termined case). This is in a sharp contrast to the proposed MNMEF,
in which the number of sources can differ from that of microphones.

Apart from accelerating algorithms, the joint diagonalization
has been employed in the signal processing literature in the con-
texts of independent component analysis [13,26] and a subspace
method [27].

4. EXPERIMENTS

We conducted music source separation experiments to compare the
conventional MNMF algorithm in Section 2.3 and the proposed
FastMNMEF in Section 3.3. These algorithms were implemented in
MATLAB (R2011a) and run on an Intel Core i7-7820X (3.6 GHz)
processor. As in [2], we took four songs (“Bearlin”, ”Another
Dreamer”, ”Fort Minor”, and ”Ultimate NZ Tour”) from a “profes-
sionally produced music recordings” database of the signal separa-
tion and evaluation campaign (SiSEC) [28]. For each song, music
parts from the database were mixed after being convolved with room
impulse responses measured in a real room [10]. The setup for room
impulse response measurement is depicted in Fig. 1. The sampling
rate of the mixtures was 16 kHz after downsampling. Some other
conditions are found in Table 2. The parameters ¢z, vij;, and zxn
were randomly initialized by nonnegative values, and Gi,, G;,,, and
P; by the identity matrix. Note that there is scale indeterminacy
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Fig. 2. Computation time for ten iterations for the song ”Bearlin”
(14-s long).

Table 2. Experimental conditions.

frame length 1024 (64 ms)

frame shift 256 (16 ms)
window square root of Hann
number of microphones, M 2,3,4,0r5

number of sources, L 3

in P; in the FastMNME. To prevent this from causing numerical
instability, each column of P; is scaled by P; + P;(D(P;))~" in
each iteration.

In the first experiment, we measured the computation time for
ten iterations of these algorithms with N = 3 and K = 10. As
seen from Fig. 2, the FastMNMF was up to 35 times faster than the
conventional MNMF algorithm. This acceleration is attributed to
efficient computation of matrix inverses, matrix products, and matrix
geometric means enabled by the joint diagonalization.

In the second experiment, we evaluated source separation per-
formance. The same procedure as in [2] was followed, which is
briefly described in the following. We set K = 30 and M = 2. The
assumed number of sources, IV, was initialized by IV < 9, and then
decreased gradually down to N = 3, which reportedly leads to ro-
bust parameter estimation [2]. In the first 20 iterations, only ¢;; and
vi; were updated with the other parameters fixed. The total number
of iterations was 471. The estimated parameters were used to esti-
mate the source signals by multichannel Wiener filtering. For each
song, ten trials were conducted.

Figure 3 shows the source separation performance SDR (signal-
to-distortion ratio) [29] averaged over all sources and all trials. We
can confirm that the above acceleration was realized without much
degrading the source separation performance. The standard devia-
tion shown by the error bar was up to 1.7 dB, which implies that the
algorithms were sensitive to the initialization. Development of an
algorithm robust to the initialization is an important open problem.

5. CONCLUSIONS

This paper proposed the FastMNMEF, accelerated MNMF algo-
rithms. The experiments implied that the joint diagonalization made
the FastMNMF up to 35 times faster than a conventional MNMF
algorithm without much degrading the separation performance.

® FastMNMF

Bearlin Another Fort Minor ~ Ultimate NZ
Dreamer Tour

8
DOconventional MNMF’

EN

SDR (dB)
N

o

Fig. 3. Source separation performance SDR.
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