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ABSTRACT

We propose a blind source separation algorithm that jointly exploits
measurements by a conventional microphone array and an ad hoc
array of low-rate sound power sensors called blinkies. While provid-
ing less information than microphones, blinkies circumvent some
difficulties of microphone arrays in terms of manufacturing, syn-
chronization, and deployment. The algorithm is derived from a joint
probabilistic model of the microphone and sound power measure-
ments. We assume the separated sources to follow a time-varying
spherical Gaussian distribution, and the non-negative power mea-
surement space-time matrix to have a low-rank structure. We show
that alternating updates similar to those of independent vector analy-
sis and Itakura-Saito non-negative matrix factorization decrease the
negative log-likelihood of the joint distribution. The proposed algo-
rithm is validated via numerical experiments. Its median separation
performance is found to be up to 8 dB more than that of independent
vector analysis, with significantly reduced variability.

Index Terms— Blind source separation, multi-modal, sound
power sensors, independent vector analysis, non-negative matrix
factorization.

1. INTRODUCTION

Blind source separation (BSS) conveniently allows to separate a mix-
ture of sources without any prior knowledge about sources or micro-
phones [1]. For example, independent component [2] and vector
[3] analysis (ICA and IVA, respectively) reliably separate sources
in the determined case, that is when there are as many microphones
as sources. The latter in particular cleverly avoids the frequency
permutation ambiguity and can be solved with an efficient algorithm
based on majorization-minimization [4, 5]. However, the recent drop
in the cost of microphones and availability of plenty of processing
power means that we are often in a situation where more micro-
phones than sources are available. While more microphones should
in principle lead to superior performance, algorithms designed for
the determined case, such as IVA, may fail. A typical problem is
for a single source to have different frequency bands classified as
different sources.

In this work, we explore the scenario where two modalities of
sound, instantaneous pressure and short-time power, are collected
with a compact microphone array and low-rate sound power sensors,
respectively. We assume that these sensors can be easily distributed
in an ad hoc fashion in the area surrounding the target sound sources.
A practical example of such devices are blinkies [6]. These low-
power battery operated sensors use a microphone to measure sound
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power which is used to modulate the brightness of an on-board light-
emitting device (LED). A conventional video camera is then used
to synchronously harvest the measurements from all blinkies. This
system is illustrated in Fig. 1 along with an actual blinky device.
While the method presented hereafter is applicable to any device
collecting sound power (e.g., distributed microphones, smartphones,
etc), we will only refer to these sensors as blinkies for convenience
in the rest of the paper.

Previous work has shown that a single blinky providing voice
activity detection (VAD) of a single source can be used to create a
powerful beamformer [6]. This technique can leverage an arbitrary
number of microphones, whose locations need not be known, and
results in large improvements in source quality. However, when sev-
eral sound sources are present, only the power of their mixture can
be measured, and the VAD becomes difficult to perform. Moreover,
errors in the VAD directly result in target source cancellation. In
this situation, non-negative matrix factorization (NMF) of the space-
time sound power matrix has been proposed as a way of separating
sources in the power domain [7]. Such space-time NMF has also
been suggested for noise suppression in asynchronous microphone
arrays [8]. Nevertheless, it remains an issue to find an appropriate
threshold for the VAD following the NMF.

Instead of this two-step process, we propose to perform the
source separation and the sound power NMF jointly. Our ap-
proach builds on prior work showing that IVA benefits from side-
information about the source activations, for example via user
guidance [9] or pilot signals [10]. As an example, the independent
low-rank matrix analysis (ILRMA) framework successfully puts
this principle to work and unifies IVA and NMF [11]. Whereas
ILRMA applied a low-rank non-negative model on the separated
source spectra, we propose instead to use the low-rank of the space-
time sound power matrix as a proxy to the source activations. The
activations of the latent variables of the NMF model are assumed to
be the variance of the separated source signals, effectively coupling
together the IVA and NMF objectives. This intuition is formalized
as a joint probabilistic model of the sources and blinky signals, and
we derive efficient updates to minimize its negative log-likelihood.

The performance of the algorithm is evaluated in numerical ex-
periments and compared to that of AuxIVA [4]. The experiment re-
sults show that including the joint separation leads to improved per-
formance in all tested cases. Not only are the median SDR and SIR
improved by up to 4 and 8 decibels (dB), respectively, but their vari-
ability is also significantly reduced, indicating stable performance.
In addition, we confirm that the use of extra microphones leads to
steady improvement in performance, even for a weak source.

The rest of the paper is organized as follows. In Section 2,
we formulate the joint probabilistic model for the microphone and
power sensor data. An efficient algorithm for estimating the param-
eters of this model is described in Section 3. Results of numerical
experiments validating the performance of the proposed method are
given in Section 4. Section 5 concludes this paper.
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Fig. 1: A) Example of a scenario with microphones and blinkies to cover a
target source. B) Picture of an actual blinky sensor.

2. JOINT MODEL

We suppose there are K target sources captured by M microphones
and B sound power sensors. In the short-time Fourier transform
(STFT) domain, the microphone signals can be written as a weighted
sum of the source signals

xm[f, n] =
K∑
k=1

amk[f ] yk[f, n] + zm[f, n] (1)

where f = 1, . . . , F and n = 1, . . . , N are the frequency and time
indices, respectively. The complex weight amk[f ] is the room trans-
fer function from source k to microphone m, and zm[f, n] collects
the noise and model mismatch. The b-th blinky signal at time n is
the sum of the sound power over frequencies at its location

ubn =

F∑
f=1

∣∣∣∣∣
K∑
k=1

abk[f ] yk[f, n] + zb[f, n]

∣∣∣∣∣
2

. (2)

In addition, throughout the manuscript we use bold upper and lower
case for matrices and vectors, respectively. The Euclidean norm of a
complex vector x is denoted ‖x‖ = (xHx)

1/2.
Our goal is to find the M ×M demixing matrix W f such that

the source signals are recovered linearly from the microphone mea-
surements

yfn = W fxfn (3)
where

yfn = [y1[f, n], . . . , yM [f, n]]> , (4)

xfn = [x1[f, n], . . . , xM [f, n]]> , (5)

W f = [w1 · · · wM ]H. (6)

We will also overload notation in a natural way to represent the sig-
nal vector of source k over frequencies

ykn = [yk[1, n], . . . , yk[F, n]]> . (7)

We now establish the joint probabilistic model underpinning the
algorithm we propose in Section 3. It is based on the three following
assumptions.

1. The separated signals ykn are statistically independent.
2. The separated signals spectra are circularly-symmetric com-

plex Normal random vectors with distribution

py(ykn) =
1

πF rFkn
exp

(
−‖ykn‖

2

rkn

)
, k = 1, . . . ,M,

(8)
and time-varying variance rkn. Taken over all time frames,
this distribution is in fact super-Gaussian and has been suc-
cessfully used for source separation [9].

3. The power measurements ubn are the squared norms of
circularly-symmetric complex Normal random vectors with
covariance matrix (

∑K
k=1 gbkrkn)IF , where gbk is a param-

eter of the power mix. Thus, the B ×N non-negative matrix
of the variances has rank K. The probability distribution
function of the norm can be derived from the χ2 distribution
with 2F degrees of freedom

pu(ubn) =
1

2FΓ(F )

uF−1
bn

σ2F
exp

(
−ubn

2σ2

)
, (9)

with σ2 =
∑K
k=1 gbkrkn. While this might seem like a devi-

ation from usual Gaussian models, the same estimator of the
variance is in fact obtained.

Note that in the above we have maintained a distinction between
the number of target sources K and the number of microphones M .
For ICA and IVA, the determined case, i.e., M = K, needs to be as-
sumed, and, because W f is anM×M demixing matrix, we will ob-
tainM demixed signals. However, onlyK out ofM sources are tied
to the blinky signals via a low-rank non-negative variance model. In-
tuitively, we are asking that the variances of theseK sources be well
aligned with the activations from the non-negative decomposition.

Putting the pieces together, the likelihood of the observation is

L =
∏
f

|detW f |2N
∏
kn

py(ykn)
∏
bn

pu(ubn), (10)

with free parameters {W f}, {gbk}, {rkn}. The following section
will describe how to estimate them by minimizing the negative log-
arithm of this function.

3. ALGORITHM

In this section, we derive an algorithm to minimize the negative log-
likelihood of the observed data. The cost function derived can be
written as the sum of those of IVA and NMF,

J = −2N
∑
f

log | detW f |+
N∑
n=1

M∑
k=1

(
‖ykn‖2

rkn
+ F log rkn

)

+

N∑
n=1

B∑
b=1

(
F log

K∑
k=1

gbkrkn +
ubn

2
∑K
k=1 gbkrkn

)
+ C, (11)

where C includes all constant terms. It is convenient to group the
parameters to estimate in matrices. We represent the gains by the
matrix G ∈ RB×K+ with (G)bn = gbn and the sources variance
matrix by R ∈ RM×N+ with (R)kn = rkn. Finally, we define U ∈
RB×N+ and P ∈ RK×N+ with (U)bn = ubn and (P )kn = ‖ykn‖2,
respectively.

The update rules for the demixing matrix W f are obtained from
the iterative projection technique proposed for IVA [4, 9]

V fk =
1

N

∑
n

1

2rkn
xfnx

H
fn, (12)

wfk ← (W fV fk)−1ek, (13)

wfk ← wfk(wH
fkV fkwfk)−

1
2 , (14)

where wfk is the k-th row of W f and ek is the k-th canonical basis
vector. These updates are done for k = 1 to M .

The update rules for G and R are very similar to those of IS-
NMF and are given by the following proposition.
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Fig. 2: Illustration of the room geometry and locations of sources and sensors
in the numerical experiments.

Proposition 1. The following updates of G and R decrease mono-
tonically the value of the cost function J from (11)

G← G

((
1
2F

U � (GRK).−2
)
R>K

(GRK).−1R>K

). 1
2

,

RK ← RK

(
1
F
PK �R.−2

K + G>
(

1
2F

U � (GRK).−2
)

R.−1
K + G>(GRK).−1

). 1
2

.

The dotted exponents, divisions, and� are element-wise power, divi-
sion, and multiplication operations, respectively. The matrices RK

and PK contain the K top rows of R and P , respectively.

Proof. Minimizing J with respect to G and RK is equivalent to
minimizing the Itakura-Saito divergence DIS(Ũ | G̃RK) with

Ũ =
1

F

[
1
2
U> P>K

]>
, G̃ =

[
G> IK

]>
. (15)

Then the above update rules are obtained by standard majorization-
minimization of the β-divergence [12, 13].

WhenK < M , there areM−K sources that are not coupled to
the NMF part of the cost function. The variance estimates of these
sources is obtained by equating the gradient of (11) to zero, resulting
in the following update

rkn =
1

F
‖ykn‖

2, k = K + 1, . . . ,M, ∀ n. (16)

There is an inherent scale indeterminacy between W f , R, and
G. It is fixed by performing a normalization step after each iteration

R ← Λ−1
M R, G← GΛK ,

W f ← Λ
− 1

2
M W f , P ← Λ−1

M P ,
(17)

where ΛK = 1
N

diag(RK1) is a diagonal matrix containing the av-
erage row values of R up to row K (1 is the all one vector). These
rescaling do not change the value of the cost function. The full algo-
rithm is summarized in Algorithm 1.

4. NUMERICAL EXPERIMENTS

In this section, we evaluate and compare the performance of Algo-
rithm 1 to that of AuxIVA [4] via numerical experiments.

Algorithm 1: Joint separation of sources and sound power
Input : Microphones {xfn} and blinky signals {ubn}
Output: Separated signals
for loop← 1 to max. iterations do

1 # Run a few iterations of NMF at once
for loop← 1 to nmf sub-iterations do

RK ←

RK

(
PK�R.−2

K
+G>( 1

2
U�(GRK).−2)

F (R.−1
K

+G>(GRK).−1)

). 1
2

G← G

(
( 1
2F

U�(GRK).−2)R>K
(GRK).−1R>

K

). 1
2

for k ← K + 1 to M do
for n← 1 to N do

rkn ← 1
F
‖ykn‖2

2 # Update the demixing matrices
for k ← 1 to M do

for f ← 1 to F do
V fk = 1

N

∑
n

1
2max{ε,rkn}

xfnx
H
fn

wfk ← (W fV fk)−1ek

wfk ← wfk(wH
fkV fkwfk)−

1
2

3 # Demix the signal
for f ← 1 to F do

for n← 1 to N do
yfn = W fxfn

4 # Rescale all the variables according to (17)

4.1. Setup

We simulate a 10 m×7.5 m×3 m room with reverberation time
of 300 ms using the image source method [14] implemented in
pyroomacoustics Python package [15]. We place a circular
microphone array of radius 2 cm at [4.1, 3.76, 1.2]. The number
of microphones is varied from 2 to 7. Forty blinkies are placed on
an approximate 4 × 10 equispaced grid filling the 3 m×5.5 m rect-
angular area with lower left corner at [1, 1]. Their height is 0.7 m.
Between 2 and 4 target sources are placed equispaced on an arc
of 120° of radius 2 m centered at the microphone array. They are
placed at a height of 1.2 m and such that they fall within the area
covered by the grid of blinkies. Diffuse noise is created by placing
10 additional sources on the opposite side of the target sources with
respect to the microphone array. The setup is illustrated in Fig. 2.

After simulating propagation, the variances of target sources are
fixed to σ2

k = 0.25 for k = 1 and σ2
k = 1 for k ≥ 2. The signal-to-

noise and signal-to-interference-and-noise ratios are defined as

SNR =
1
K

∑K
k=1 σ

2
k

σ2
n

, SINR =

∑K
k=1 σ

2
k

Qσ2
i + σ2

n

, (18)

where σ2
i and σ2

n are the variances of the Q interfering sources and
uncorrelated white noise, respectively. We set them so that SNR =
60 dB and SINR = 10 dB. Speech samples of approximately 20 s are
created by concatenating utterances from the CMU Sphinx database
[16]. All utterances in a sample are taken from the same speaker. The
experiment is repeated 50 times for different attributions of speakers
and speech samples to source locations.

The simulation is conducted at a sampling frequency of 16 kHz.
The STFT frame size is 4096 samples with half-overlap and uses a
Hann window for analysis and matching synthesis window. The B
blinky signals are simulated by placing extra microphones at their
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Fig. 3: Box-plots of signal-to-distortion ratio (SDR, left) and signal-to-interference ratio (SIR, right) of the separated signals. From top to bottom, the number
of sources increases from 2 to 4. The number of microphones increases from 2 to 7 on the horizontal axis. Odd and even columns show results averaged over
all sources and for the weak source only, respectively.

locations. The blinky microphone signals are fed to the STFT and
their power is summed over frequencies before processing1. Fi-
nally, Algorithm 1 is compared to AuxIVA [4] as implemented in
pyroomacoustics [15]. Both algorithms are run for 100 itera-
tions, and the number of NMF sub-iterations of Algorithm 1 is 20.
The scale of the separated signals is restored by projection back on
the first microphone [17].

4.2. Results

We evaluate the separated signals in terms of signal-to-distortion
ratio (SDR) and signal-to-interference ratio (SIR) as defined in [18].
These metrics are computed using the mir eval toolbox [19].
While Algorithm 1 provides automatic selection of the separated
signals when K < M , this is not the case for AuxIVA. As a
work-around, we select the K signals with the largest power for
comparison.

The distribution of SDR and SIR of the separated signals is il-
lustrated with box-plots in Fig. 3. Both the distribution averaged
over all sources and for the weak source only are showed. Overall,
the joint formulation improves over AuxIVA in terms of both SDR
and SIR improvements in all cases. For two and three sources, while
the performance of AuxIVA is very signal dependent, with dips as
low as 0 dB in terms of SIR, the proposed method gives consistent
performance around or above 20 dB. Even for the weak source, the
proposed method in many cases has a 25-th percentile higher than
the 75-th percentile of AuxIVA. With four sources, both methods
have similar average performance when up to 6 microphones are
used, with Algorithm 1 outperforming AuxIVA for 7 microphones.

1In practice, the blinky signals acquired via LEDs and a camera need to
be calibrated and resampled at the STFT frame rate.

In addition, we observe that only the proposed method successfully
exploits extra microphones to extract the weak source. With 7 mi-
crophones the SIR are 4.7 and 12.9 dB for AuxIVA and Algorithm 1,
respectively.

5. CONCLUSION

In this work, we showed that using sound power sensors, e.g.
blinkies, together with a conventional microphone array signifi-
cantly boosts the performance of blind source separation. Because
the blinkies can be distributed over a larger area, they can provide
reliable source activation information. We formulated a joint prob-
abilistic model of the microphone and power sensor measurements
and used it to derive an efficient algorithm for the blind extraction of
sources from the microphone signals. We showed through numerical
experiments that including the power data effectively regularizes the
source separation. Performance of the proposed method increases
steadily with the number of microphones, unlike conventional IVA
that suffers in some cases from frequency permutation ambiguity. In
addition, the proposed method is able to recover a source with just a
quarter the power of three competing sources, whereas conventional
IVA fails to do so.

A key question that has yet to be answered is that of the influence
of the placement of blinkies with respect to sound sources. Indeed,
we would like to determine the minimum density and under what
conditions the joint separation performs best. Finally, the proposed
algorithm should be tested in real conditions.
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