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ABSTRACT

Separating an audio scene into isolated sources is a fundamental
problem in computer audition, analogous to image segmentation in
visual scene analysis. Source separation systems based on deep
learning are currently the most successful approaches for solving the
underdetermined separation problem, where there are more sources
than channels. Such systems are normally trained on sound mix-
tures where the ground truth decomposition is already known. In
this work, we use an unsupervised spatial source separation on stereo
mixtures which generates initial decompositions of mixtures to train
a deep learning source separation model. These estimated decom-
positions vary greatly in quality across the training mixtures. To
overcome this, we weight the data during training using a confi-
dence measure that assesses which mixtures or parts of mixtures
are well-separated by the unsupervised algorithm. Once trained, the
model can be applied to separate single-channel mixtures, where no
source direction information is available. The idea is to use simple,
low-level processing to separate sources in an unsupervised fashion,
identify easy conditions, and then use that knowledge to bootstrap
a (self-)supervised source separation model for difficult conditions.
We also explore using the two approaches in an ensemble.

Index Terms— audio source separation, cocktail party problem,
deep clustering, noisy learning, auditory scene analysis

1. INTRODUCTION

Separating an audio scene into isolated sources is a fundamental
problem in computer audition, analogous to image segmentation
in visual scene analysis. Robust source separation would improve
many technologies, including hearing aids, speech recognition in
complex auditory environments, and biodiversity monitoring (e.g.,
birdsong identification).
Source separation systems based on deep learning are currently the
most successful methods for separating recordings containing multi-
ple concurrent sounds in underdetermined conditions, that is, where
there are fewer channels than sources [1]. Traditionally, deep learn-
ing systems are trained on many mixtures (e.g., tens of thousands)
for which the ground truth decompositions are already known. Since
most real-world recordings have no such decomposition available,
developers train systems on artificial mixtures created from isolated
individual recordings. Although there are large databases of isolated
speech, it is impractical to find or build large databases of isolated
recordings for every arbitrary sound. This fundamentally limits the
range of sounds that deep models can learn to separate.
The traditional learning procedure for these source separation mod-
els is in contrast to how humans learn to segregate audio scenes [2]:
sources are rarely presented in isolation and almost never in “mix-
ture/reference” pairs. One can argue that the brain is able to learn to

separate sounds without having access to large datasets of isolated
sounds. There is experimental evidence that the brain uses funda-
mental cues (e.g., direction of origin of a sound) that are indepen-
dent of the characteristics of any particular sound source to perform
an initial segmentation of the audio scene [3]. The brain could use
such cues to separate at least some scenes to some extent, and use
that information to train itself to separate more difficult scenes.

In many stereo recordings (both natural and artificial), sources are
spatialized such that the primary signal energy from one source
comes from a different direction than that of another source. In
a stereo (a.k.a. two-channel) recording, the direction of origin of
a source is typically manifested as a phase and amplitude differ-
ence between the two channels. Source separation approaches such
as DUET [4] and PROJET [5] have exploited such differences to
perform separation without relying on training data.

In this work, we explore using spatial source separation on stereo
mixtures to generate initial decompositions of audio mixtures. The
decompositions vary greatly in quality from mixture to mixture. We
derive a confidence measure in the decompositions, based on the
clustering of features of the stereo mixture. These decompositions
are weighted by confidence and used to train a deep-learning source
separation model, here based on deep clustering [6]. Once trained,
the model can be applied to separate single-channel mixtures, where
no source direction information is available. The idea is to use sim-
ple, low-level processing to separate sources using spatial informa-
tion in easy conditions (e.g., where the sources are well separated
spatially and reverberation is limited) and then use that knowledge
to bootstrap a source separation model for difficult conditions.

Several recent efforts have attempted to learn to perform tasks such
as representation learning or source separation in one modality by
using another modality to perform cross-modality self-supervision.
In the case of audio, these works learn to localize or separate sounds
by using vision as the extra modality [7–11]. In contrast, our work
explores the use of stereo audio to supervise single-channel audio
source separation, instead of crossing modalities.

This work can also be considered as an instance of deep learning in
the presence of noisy labels, which has previously been explored for
images [12, 13]. The estimation of confidence measures of source
separation estimates was explored in [14] and learning to separate
sources using features derived from cues was explored in [15]. In
contrast to [14], we derive a confidence measure based on the clus-
tering space and do so without requiring any training. In contrast
to [15], we treat the output of the spatial cue as “pseudo ground
truth”, rather than using it as an input feature and mapping it to the
actual ground truth. The system is illustrated in Fig. 1.
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Fig. 1. Illustration of the proposed bootstrapping of single-channel
separation using blind spatial separation.

2. PROPOSED METHOD

2.1. Spatial source separation

To generate the initial segmentations used for training the model,
we use a simple blind source separation method that clusters time-
frequency (T-F) bins based on low-level features present in stereo
mixtures. This method belongs to a well studied family of spa-
tial source separation algorithms [16] such as DUET [4] and GMM
spatial clustering [17]. The assumption is that T-F bins with sim-
ilar spatial features likely come from the same direction, and that
sounds coming from the same direction belong to the same source.
If the sources are coming from distinct spatial locations, one will ob-
serve significant inter-channel difference, giving a good clustering
and separation result. The key idea is to exploit differences between
the two channels to decide which T-F bins go with which source.
We first transform the input stereo audio to a stereo complex spec-
trogram X

(c)
t,f where c is the channel, t the time index, and f the

frequency index. We then extract the interchannel phase difference
(IPD) θ and the log magnitude spectrogram X log:

θt,f = ∠
(
X

(0)
t,fX

(1)
t,f

)
, (1)

X log
t,f = 20 log10

(
|X(0)

t,f |
)
. (2)

We use the cosine and sine of the IPD, cosIPD = cos θt,f , sinIPD =
sin θt,f to form a two dimensional feature space. As these features
are correlated, we project them down to a single dimension, φt,f ,
using principal component analysis (PCA). We cluster the feature
space using a Gaussian mixture model (GMM) with a full covari-
ance matrix that is fit using the expectation-maximization (EM) al-
gorithm. We use such a clustering approach because it lets us derive
a confidence measure for the assignment of T-F bins to sources.

To bias the clustering towards bins with significant energy, we only
fit the GMM to bins such that X log

t,f > τ , where τ is a manually set
threshold (set to−10 in this work). The number of componentsN in
the GMM is set ahead of time (N = 2 in this work). The GMM pos-
terior assignments are used as masks on the complex spectrogram,
one for each Gaussian component zj :

γ
(j)
t,f =

P (φt,f |zj)P (zj)

P (φt,f )
. (3)

We use the spatial information contained in stereo recordings to esti-
mate a (pseudo) label matrix Ŷ . We do this by comparing the masks
produced by the GMM. The mask with the highest value (i.e. high-
est posterior probability) for a T-F point determines the label of that
point. Given T-F bins i and k, the value for Ŷi,k is binary: 1 if they
belong to the same source, and 0 if they belong to different sources.
This is done the same way as in the original deep clustering work [6],
with binary masks, except here the estimated sources from the spa-
tial model are used as pseudo ground truth.

2.2. Confidence measure
Compared to the ground truth label matrix Y , assignments in Ŷ may
be incorrect. As we do not have access to ground truth, we derive
a confidence measure from the Gaussian mixture model fit to the
spatial features. We measure three aspects of the clustering to com-
pute an overall confidence: cluster size equality, clustering fit, and
posterior assignments.
Cluster size equality: The N clusters should contain a roughly
equal fraction of the total number TF of T-F bins, where T and
F are the number of time frames and frequencies, to mitigate mode
collapse (all points being assigned to one cluster). This scalar mea-
sure is defined as:

Ccl =

N∑
j=1

( 1

N
−
∣∣∣ 1
N
− fj

∣∣∣). (4)

where fj is the fraction of T-F bins hard-assigned to cluster j.
Clustering fit: To measure how well separated the clusters are in the
spatial feature space, we compute the Jensen-Shannon Divergence
(JSD) [18] between a GMM P with one component and a GMM Q
with N components, both fit to that space. With KL denoting the
KL-divergence, this scalar measure is defined as:

CJSD = JSD(P ‖ Q) =
1

2
KL(P ‖ P +Q

2
) +

1

2
KL(Q ‖ P +Q

2
)

(5)
If the spatial features cluster into fewer than N distinct sources, the
overlap between the N component GMM and the single component
GMM will increase. The JSD measures this and returns a number
between 0 (completely overlapping distributions) and 1 (distinct dis-
tributions). Note that Eq. (5) has no closed-form solution for ar-
bitrary mixture models [19, 20]. Instead of computing (5) directly,
we approximate it using the Monte Carlo method. Finally, JSD was
chosen over other information criteria, such as Bayesian and Akaike,
as it does not penalize for the number of parameters and also actu-
ally computes the overlap between the distributions rather than the
difference in log likelihood.
Posteriors: We use the posteriors γ to measure how confident the
GMM is for each T-F bin, unlike the previous two global measures.
Points with unsure posteriors (assignment shared roughly equally by
all components) are down-weighted. This measure is defined as:

Cpost(t, f) = 2
∣∣∣ max
j∈{1,...,N}

γ
(j)
t,f −

1

2

∣∣∣ (6)

Equations (4), (5), and (6) all produce numbers in [0, 1]. To compute
the overall confidence measure C, we simply take the product of the
three measures and raise to a power α:

Ct,f (α) = [CclCJSDCpost(t, f)]
α. (7)

This confidence measure weights every time-frequency point in the
representation. It ranges between 0 (low confidence) and 1 (high
confidence). The exponent α is a tunable parameter that can be used
to emphasize or de-emphasize high confidence examples. We test
α = 0.5, 1, 2. In Fig. 2, we show the relationship between the confi-
dence measure for a mixture and the source-to-distortion ratio (SDR)
for the separation for the validation mixtures in our dataset (Section
3.2). We plot the log to visualize the lower end of the distribution.
The correlation between the confidence measure (not its log) and
SDR has an r-value of 0.36 with a p-value� 0.001.

2.3. Training the single-channel model
The model we use for source separation is based on deep cluster-
ing (DC) [6, 21]. We selected deep clustering because it is a highly
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Fig. 2. Relationship between log of confidence measure and SDR.

successful approach that has inspired multiple successful variants
[22–27]. Further, its separation framework is somewhat connected
to our primitive spatial separation as it is based on clustering as well,
but in a learned embedding space, and its objective function has been
shown to be amenable to the introduction of weights. In DC, a neu-
ral network is trained to map each T-F bin in a spectrogram to a
higher-dimensional embedding where bins that belong to the same
source are near each other and bins that belong to different sources
are far from each other. Once trained, the network is used to embed
a new spectrogram representing an auditory scene. Sources are then
recovered by clustering in the embedding space.

Here, we train the DC network using a label matrix obtained by treat-
ing the estimates from the spatial segmentation as pseudo ground
truth. Because this pseudo ground truth may not be reliable, we use
a version of the original DC objective [6] that was modified to in-
clude a weight wi for each T-F bin i = (t, f) [26]:

LDC,W (V, Y ) = ‖W 1/2(V V T − Y Y T )W 1/2‖2F (8)

=
∑
i,j

wiwj [〈vi, vj〉 − 〈yi, yj〉]2, (9)

where V = (vi) denotes an embedding matrix, Y = (Yi) a label
matrix, andW = diag(w) a diagonal matrix with the weights on the
diagonal. In [26], weights were introduced to make the network fo-
cus on louder T-F points in the spectrogram, since these points have
a bigger effect on perceived separation quality, and assignments of
silent regions are rather arbitrary and should thus not have a large
impact when learning the embeddings. Here, we use the weighted
version of the DC loss function, but our weights instead incorpo-
rate both the confidence measure C and the magnitude weighting.
Specifically, wt,f (α) = Ct,f (α)[|Xt,f |/

∑
t,f |Xt,f |]. This objec-

tive function makes the network focus on learning embeddings for
T-F points that are both classified by the spatial classifier with high
confidence and also have significant energy. Because spatial infor-
mation is only used in the objective function, once the network is
trained, we can use it to process single-channel mixtures (where the
spatial source separation algorithm cannot be used) and cluster the
embeddings using K-means clustering to recover the sources.

3. EXPERIMENTS

We investigate whether single-channel source separation can be
bootstrapped from noisy estimates produced by a stereo separation
algorithm, and whether weighting the estimates using confidence
improves performance of the bootstrapped model. We also explore
ensembles of the spatial algorithm and the bootstrapped models.

3.1. Network architecture

Our network is similar to those in the original deep clustering works
[6, 21], consisting of a four layer BLSTM stack with 300 units in
each direction followed by a dense layer. The dense layer uses a
tanh non-linearity and outputs a 15 dimensional embedding for each
T-F bin. The network has 8.7M parameters. This network architec-
ture was used for all models, with the same random initialization.

3.2. Dataset and training procedure

Our training, validation and test data are from the publicly available1

spatialized version of the Wall Street Journal mix dataset with two
speakers (wsj0-2mix) [6, 28]. This dataset is created by randomly
mixing the speakers at random locations in synthetic rooms in re-
verberant and anechoic conditions. We use the anechoic version of
this dataset in this work, where the speakers are panned at random
(sometimes overlapping) angles. There are 20000, 5000, and 3000
two-speaker 8-channel mixtures for training, validation, and testing.
Our spatial algorithm only operates on two of the first 4 channels,
randomly selected to create a stereo mixture at training time. Our
deep clustering model is trained on the single-channel mixture cor-
responding to the first channel of the stereo mixture.
We consider two possible outputs for training our model. The first
is the ground truth decomposition, which are available because our
dataset contains separated sources. The second is the estimated de-
composition provided by the spatial source separation algorithm.
This algorithm is based on inter-channel phase difference, cluster-
ing, and time-frequency masking and does not achieve great separa-
tion quality. The motivation of this work is to see if it is possible to
learn how to perform source separation from a biologically inspired
source separation algorithm that produces noisy estimates in concert
with a confidence weighting scheme. Due to the poor performance
of the spatial algorithm on reverberant data (1.1 dB SDR), we restrict
our analysis to the anechoic case. We hypothesize that a better blind
spatial source separation algorithm that can handle reverberant cases
would allow for even more successful bootstrapping of a model.
The audio mixtures have a sampling rate of 8 kHz, spectrogram win-
dow size of 32 ms and hop size of 8 ms. The input to the network is
a sequence of log magnitude spectrogram features, with sequences
of at most 400 frames used for training. The networks are trained for
100 epochs with a batch size of 40 and optimized using Adam with
an initial learning rate of 1e-3. The learning rate is decayed by half
if the validation loss does not go down for 5 consecutive epochs.

3.3. The source separation approaches we compared

We trained a set of deep clustering (DC) models that all share the
same architecture and initialization weights, but were trained either
on ground truth separated signals (providing an upper bound on per-
formance) or on source separation results produced by the spatial
separation model. Unless otherwise noted, all models were trained
until convergence on all 20k training examples. Models trained on
the spatial model output were either provided raw training examples
(with only magnitude weighting viaw(0)) or examples weighted us-
ing our confidence measure via weights w(α) with α > 0.
We tested each of the trained models on single channel mixtures:
the first channel in each of the 3000 test mixtures. We also evalu-
ated performance of the spatial separation algorithm. For the spatial
model, we took the first channel and a random other channel from

1http://www.merl.com/demos/deep-clustering
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Fig. 3. Relationship between performance of the spatial algorithm
and the bootstrapped model with the confidence weighting scheme
(α = 1) on test mixtures, with the line y = x plotted in white.

Table 1. SI-SDR (dB) for each approach. DC: Deep clustering.
Approach Quality Quantity SDR SIR SAR

1ch

DC w/ ground truth (20k) 1.000 1.000 9.2 22.4 9.5
DC w/ ground truth (1k) 1.000 0.050 2.5 11.5 3.3
DC w/ estimates, α = 0 0.303 1.000 1.8 11.9 2.8
DC w/ estimates, α = 0.5 0.362 0.205 2.8 13.5 3.6
DC w/ estimates, α = 1 0.387 0.054 2.9 13.5 3.7
DC w/ estimates, α = 2 0.400 0.005 1.8 11.5 2.7

2ch

Spatial algorithm - - 4.3 17.3 5.6
Ensemble (oracle, α = 1) - - 6.2 19.6 7.0
Ensemble (random, α = 1) - - 3.6 15.4 4.6
Ensemble (conf., α = 1) - - 5.0 18.3 5.9

the other 3 channels to produce a stereo mixture. We make a mask
using the spatial algorithm and applied it to the first channel.
Since the confidence measure relies only on the unsupervised spatial
separation algorithm, it does not require ground truth to be com-
puted. This lets us explore using the best bootstrapped model (DC
on estimates, weighted, α = 1) in concert with the spatial source
separation on stereo mixtures, using the mean confidence measure
to mediate between the two approaches. If confidence in the spatial
model’s output is low, we discard it and use the DC model. If con-
fidence is high, we discard the DC model and use only the spatial
model. We set the switching point at the bottom quartile of all the
mean confidence measures across all validation mixtures. We com-
pared this approach (confidence) to one where the true performance
of both approaches is known and the best output is always selected
(oracle) and one where the approach is selected randomly.

3.4. Results

Table 1 shows the performance of each algorithm in terms of scale-
invariant SDR (SI-SDR) [29]. We first observe that deep clustering
trained on the ground truth far outstrips the other approaches, indi-
cating that there is still work to be done to bootstrap high quality
source separation models. We also see that the confidence weights
have a significant impact on performance of the bootstrapped model,
raising it by 1.1 db SDR. This indicates that confidence weighting
is important for learning from estimates. This could be because it
increases the signal to noise ratio in the training data. The exponent
α in Eq. (7) controls the balance between quality and quantity of
training data effectively seen by the model: with α = 0, all data
is considered as pseudo ground truth, regardless of quality, while
higher values of α de-emphasize low-confidence examples, improv-

ing average quality at the expense of the effective total amount of
training data. While α = 0.5 and α = 1 show good performance,
both the low value α = 0 and high value α = 2 lead to significantly
decreased performance, indicating a trade-off between quantity and
average quality of the examples.
We estimate the proportion of the training data used by the boot-
strapped model (α = 1) versus the ground truth model, by compar-
ing the sum of confidence weights wi(α) across the entire dataset.
This quantity measure, shown in Table 1, indicates the bootstrapped
model effectively sees about 5% of the training data seen by the
ground truth model. When trained on 5% of the training data (1k
examples), the SDR of the ground truth model decreases from 9.2
dB to 2.5 dB, on par with the bootstrapped model with α = 1. As
alpha increases, the amount of effective training data decreases.
To quantify the quality of the labels seen by the model, we use
1 − dχ2(w(α) � Y,w(α) � Ŷ ) where dχ2 is the chi-squared dis-
tance between partitions [15,26,30,31], applied between the ground
truth labels Y and the estimated labels Ŷ produced by the spatial al-
gorithm, where the label matrices are weighted by

√
wi(α) at each

T-F point (similarly to Eq. (8)). We compute the weighted average
across the entire training dataset, with each example weighted by
the sum of confidence weights

∑
i wi(α) over that example, as the

quality shown in Table 1. As expected, quality increases with α.
The spatial algorithm outperforms the bootstrapped model, although
the comparison is not fair because the spatial algorithm has stereo in-
put while the bootstrapped model has only single-channel input. In
single-channel cases or cases with little spatial separation, the spatial
model cannot be used at all. Figure 3 shows the relationship between
the SDRs for both approaches. There are many cases where one
approach is better than the other, indicating an ensemble approach
may be fruitful in the stereo setting. This is akin to the human audi-
tory system, which mediates between primitives (cues) and schema
(learned models) to successfully parse the auditory scene [2]. Table
1 shows an ensemble method (relying on stereo cues when the con-
fidence measure is high and switching to the bootstrapped model if
low) out-performs either approach in isolation. This indicates that
in difficult cases where the spatial algorithm fails, the bootstrapped
model is more successful, on average. An ensemble that picks ran-
domly between the spatial algorithm and the bootstrapped model
under-performs the spatial algorithm by itself, indicating the use-
fulness of the confidence measure to control selection. An oracle
ensemble improves on the confidence ensemble by 1.1 db, suggest-
ing room for improvement in the confidence measure.

4. CONCLUSION

We have presented a biologically inspired method for bootstrapping
a single-channel deep network for source separation. The model is
trained on noisy separation estimates produced by a spatial audio
source separation algorithm applied to stereo mixtures. The trained
model can separate sources in single-channel mixtures, where the
cue needed by the method that trained the model is not present.
We constructed a confidence measure in the output of the spatial
algorithm. A similar confidence measure can be defined for any
clustering-based separation algorithm. We use this measure to re-
duce the impact of poor training estimates on model training. We
find that weighting examples by confidence improves performance.
We can also use the confidence measure at test time, creating an en-
semble method that mediates between a spatial cue based algorithm
and a model that was bootstrapped from that algorithm. This ensem-
ble outperforms either approach by itself.
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