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ABSTRACT

Automatic classification of bioacoustic signals is an es-
sential tool in biology for laborious tasks such as environmen-
tal monitoring in areas of difficult access. A working system
applied in the field must be able to run on small scale ma-
chines and make reasonable predictions from a small sample
of data. Recently, a method called Grassmann singular spec-
trum analysis (GSSA) was introduced as the latest develop-
ment in a line of research where bioacoustic signals are rep-
resented by subspaces. While this paradigm is compact and
introduces a straightforward discriminant analysis for classi-
fication, it is based on a Grassmann kernel, which approxi-
mates the Grassmann manifold by a reproducing Hilbert ker-
nel space, thus depending on a choice of a dictionary and
not being able to capture the signals complexity from a small
class sample. In this paper, we propose a method named tan-
gent singular spectrum analysis (TSSA), which continues to
exploit the advantages of subspace representation but does
not rely on approximating the Grassmann manifold by a low-
dimensional kernel. We formulate a discriminant analysis on
a tangent space to the data sample mean, using the extrinsic
coordinates of the manifold. The validity of TSSA is demon-
strated through experiments on the Amazon rainforest Anuran
dataset.

Index Terms— Bioacoustic signals, tangent singular
spectrum analysis, Grassmann manifold.

1. INTRODUCTION

Bioacoustic signal classification has become an indispens-
able tool in biology, by providing experts with the means
to efficiently collect information for monitoring of ecologi-
cal communities, and searching clues for understanding the
cladistics of animals from the perspective of similitude of
their bioacoustic mechanisms. Monitoring species remotely
and in real-time allows the gathering of critical information
not only to predict changes in the populations, but observing
correlated phenomena, e.g. pollution of water, air, soil and
climate changes.

Bioacoustic signal xin(t)

window of n
lagged vectors

Grassmannian
G(m, d)

Grassmann tangent space
TkG(m, d)

Hankel Matrix Xin

x1 x2 . . . xn

. . .

. . .

. . .xdxd+1 xd+n−1

x2 x3 xn+1...
...

...

X>inXin = UU>

Yin = XinU
∗

yin = span(Yin)

0
yc=1

yc=2

yin

Fig. 1. Conceptual diagram of the proposed TSSA.

A classification algorithm for bioacoustics needs to have
low computational cost during its acquisition, preprocess-
ing and classification stages. This constraint is necessary to
perform monitoring through small-scale devices, deployable
on the environment. Likewise, such an algorithm needs to
produce reliable predictions from a small dictionary of data,
mainly for two reasons: first, gathering and labelling data for
an initial dictionary can be expensive and time-consuming for
biologists. Second, some species are extremely rare or under
risk of extinction, and only a few samples will be available in
a practical timeframe.

Various of the recently proposed bioacoustic signal clas-
sification frameworks [1, 2] are comprised of multiples ele-
ments, including noise [3] and dimensionality reduction [4],
feature selection [5], model training [6] and classification [7].

Motivated by the constraint on computational cost, mu-
tual singular spectrum analysis (MSSA) [8] was introduced
as a novel bioacoustic signal representation based on sub-
spaces. Its model is compact and requires no cost-intensive
preprocessing techniques such as segmentation, noise reduc-
tion or syllable extraction. The input signals are represented
within the singular spectrum analysis (SSA) paradigm, by a
set of leftmost eigenvectors extracted based on the signals’
accumulated energy. This set forms a basis for a subspace in
the vector space, since the vectors are orthonormal [9, 10].
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Then, canonical angles [11, 12] between the different bioa-
coustic subspaces are used to measure their similarity, and
1-NN classification is performed.

Later, Grassmann singular spectrum analysis (GSSA) [13]
has been proposed as an extension of MSSA, addressing
the issue that it had no discriminant mechanism to separate
classes (e.g. species of animals). They introduce a formula-
tion based on the fact the set of subspaces form a Riemannian
manifold called Grassmannian. Inspired by the popularity
of discriminant analysis on a Grassmannian (GDA) in the
field of image set classification [14, 15, 16, 17], the paper
introduces this paradigm for the classification of bioacoustic
signals. Each subspace, and thereby, each bioacoustic signal
is represented by a point on the Grassmann manifold.

However, a caveat of GSSA is that it conducts kernel
discriminant analysis through the kernel trick with a Grass-
mann kernel [18]. It does not perform discriminant anal-
ysis on extrinsic matrix variables, but instead it creates a
low-dimensional parameterisation of the Grassmannian as
a reproducing Hilbert kernel space. The problem with this
premise in the setting of bioacoustic signal classification is
that we have a constraint on available data as discussed above,
and the Grassmann kernel’s parameterisation is intrinsically
dependent on a choice of dictionary. Using such a kernel with
a small dictionary may impair the classification ability, as the
kernel may not be able to capture the signals’ complexity.

To tackle the problem of bioacoustic signal classification
with a constraint on the number of available samples, we
formulate a new algorithm of discriminant analysis for sub-
spaces, temporarily called tangent singular spectrum analy-
sis (TSSA), which is depicted as a conceptual illustration in
the Figure 1. Instead of relying on a kernel parameterisation
of the Grassmannian, we utilise the extrinsic matrix structure
of the manifold; the subspaces are mapped through the loga-
rithmic map onto a tangent space at the sample mean of the
data, called Karcher mean; then discriminant analysis in ma-
trix space is performed.

We summarise our contributions as follows: (1) We pro-
pose a discriminant bioacoustics classification algorithm
called TSSA which does not approximate the Grassmann
manifold using a kernel parameterisation. (2) We continue
to exploit subspaces advantages to bioacoustic systems, such
as a low storage requirements; integrated filtering and simple
selection of compactness ratio; robustness to arbitrary signal
lengths; and self-containment, not requiring preprocessing
techniques, such as segmentation, or syllable extraction.

2. PROPOSED METHOD

2.1. Review of MSSA

Consider Nc reference bioacoustic signals xic(t) for each c-th
class (c = 1, . . . , C), where i = 1, . . . , Nc, and Nc can be
different for each class. The index t = 1, . . . , Lic indicates

the ordering of the signal in time up to its length Lic.
We consider only the variant MSSA-II from [13]. It as-

sumes that each signal xic(t) can be represented by a linear
mapping in terms of its autocorrelation, different from the
original MSSA that extended this assumption to a whole class
of signals. The reason is that the original assumption was
too strong and did not provide the necessary flexibility for
a class with non-gaussian noise, also not scaling well with
an increasing number of signals per class. There is no cost
penalty to consider the second variant, which we refer to as
simply MSSA.

Each signal in MSSA is represented by a subspace yic;
thus a class of signals is effectively represented by a set of
subspaces {yc}. The dimension of subspaces m, correspond-
ing to the signal’s compactness ratio, is selected empirically
during the training. For a given unknown input bioacoustic
signal xin(t) of length Lin, the task is to compute a sub-
space yin and predict its corresponding bioacoustic class (e.g.
species) based on the nearest subspace.

Now we review the representation by a SSA subspace; for
that, consider a single signal x(t). First, we apply a sliding
window over x(t) to turn the 1−dimensional signal of length
L in a sequence of n lagged vectors of length d arranged in
a Hankel matrix H ∈ Rd×n, i.e. the vectors form blocks
of a matrix Hi,j = Hi+j−2, where the number of columns
n is the number of desired oscillatory components (or prin-
cipal components), which has a direct correspondence with
the maximum delay of the autocorrelation. Therefore, the to-
tal number of columns in matrix H is given by relationship
n = L−d+ 1. Note that the anti-diagonal elements in H are
equal.

The singular value decomposition (SVD) of the autocor-
relation matrix H>H is performed to find the directions of
maximum variance of the Hankel matrix H; that is, for this
case: UΛU> = H>H , where the columns of U ∈ Rn×n
corresponds to the eigenvectors of H>H and the diagonal
of Λ corresponds to the singular values λj (j = 1, . . . , n),
i.e. diag(Λ) = λ1, λ2, . . . , λn in decreasing order. Given
the compactness ratio m, the m-leftmost matrix U∗ ∈ Rn×m
from U is selected, containing the first m eigenvectors cor-
responding to the highest eigenvalues. The Hankel matrix
H is projected onto the subspace spanned by U∗ to obtain
X = HU∗ ∈ Rd×m, which is the best m-rank approxima-
tion of H and spans the subspace y that characterizes our sig-
nal. In our classification framework, we utilize the previous
procedure to compute basis matrices Xi

c ∈ Rd×m for a SSA
subspace yic corresponding to each reference signal xic(t).

2.2. Grassmann Manifold

Now, we introduce here the concept of Grassmann manifold
and operations we can perform on it. First, the Grassmann
manifold G(m, d) is defined as the set of m-dimensional lin-
ear subspaces of Rd. It is an m(d−m)-dimensional compact
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manifold and can be written as a quotient space of orthogonal
groups G(m, d) = O(d)/O(m) × O(d −m), where O(m)
is the group of m×m orthonormal matrices. A subspace can
be represented an orthogonal basis matrix, and the set of tall
orthogonal matrices comprises the compact Stiefel manifold
S(m, d).

A tangent space TyG at y ∈ G(m, d) can be seen intu-
itively as a subspace of Rd×m, since TyG can be derived as
a horizontal space. Given a point W ∈ S(m, d), such that
span(W ) = y, a horizontal space H is a subspace of the
tangent space TWS ( a copy of Rd×m) which contains the di-
rections of infinitesimal variation of W that modify its span.

The Grassmann manifold is a Riemannian manifold,
when endowed with a Riemannian metric g. As a quotient
manifold of an embedded submanifold of Rd×m, the Eu-
clidean metric induces the Grassmannian canonical metric
g : U1 × U2 → trU>1 U2, U1,U2 ∈ TyG. The metric
g can be intuitively seen as the restriction of the Euclidean
metric to a Grassmann tangent space (a horizontal space H).

2.3. Exponential map

The exponential map Exp : G × TG × R → G can be
used to calculate an specific point on a geodesic γ(t), given
a point γ(0), a direction γ̇(t) and a length t. It is de-
noted by γ(t) = Expy u, meaning the point γ(t) in the
geodesic emanating from y = γ(0) in the direction of
u = t γ̇(0)

‖γ̇(0)‖ . In this paper, we utilise the extrinsic func-
tion [19] S(t) : t ∈ [−ε, ε] → S(m, d) for a geodesic
γ(t) on the Grassmann manifold, where γ(t) = span(S(t)).
Consider S(0) = S and Ṡ(0) = U , then the equation fol-
lows: S(t) = orth(SQ(cos Σt)Q> + J(sin Σt)Q>), where
JΣQ> = U is the compact singular value decomposition
of U . Here, J ,S, S(t) ∈ S(m, d) and Q ∈ O(m) are
orthonormal matrices,and Σ ∈ diag(m) is a diagonal matrix.

2.4. Logarithmic map

The inverse of the exponential map is the logarithmic map (or
log map) Log : G × G → TG, denoted by u = Logx y.
Given two points on the manifold x and y, one wants to
find the tangent vector u at x pointing towards y. Note that
Logx y 6= Logy x. In this work, following [19], given two
basis matrices X and Y for x and y, we calculate the log
map by solving the SVD ((Y >X)−1(Y >−Y >XX>))> =
WΘZ>, and then reconstructing the tangent vector by u =
W ∗ arctan(Θ∗)Z∗>, where W ∗,Θ∗ and Z∗ are the m-
leftmost matrices of W ,Θ and Z respectively.

2.5. Sample mean and variance in the Grassmann mani-
fold

Since a manifold is not necessarily a vector space, additive
mean may not be valid. Instead, inspired by the approach to

statistics on manifolds of previous works [20, 21], the Karcher
mean [22] is utilised, which can be computed through algo-
rithm 1. Likewise, sample variance of the data is defined as
the expected value of the squared Riemannian distance from
the mean, i.e. E[‖Logk x‖2], where k is the Karcher mean
and x is a random point;

2.6. Orthogonal projection in matrix space

We use the notation PAj
(X) : X →

∑n
j=1 Aj trA>j X to

denote the projection of X onto a n-dimensional subspace
spanned by the matrix space basis {Aj}, (j = 1, . . . , n).
Note that this does not refer to subspaces of the Grassman-
nian of data, but refers to projection onto subspaces of the
tangent space.

Algorithm 1: Computation of the Karcher mean
input : subspaces {xi} ∈ G , where i = 1, . . . , N ; a

step τ ; and a patience ε.

k0 = x1 // 1: initialise the mean
with a sample

do
∆k = τ

N

∑N
i=1 Logkj

xi // 2: log-map

points to Tkj
M

kj+1 = Expkj
∆k // 3: exp-map

velocities to the manifold
while ‖k‖ > ε // 4: stop when the
candidate become small

output: k ∈ G, the Karcher mean

2.7. Tangent Discriminant Analysis

The algorithm of discriminant analysis (LDA) [23] can be
realised for matrix space as follows. Let Xi

c ∈ Rd×m be
the basis matrix for a SSA subspace yic corresponding to
each reference signal xic(t). Each class c has Nc number
of samples. We calculate the Karcher mean k of all sub-
spaces through algorithm 1. Let X̄c = 1

Nc

∑Nc

i=1 Logk X
i
c be

the sample mean of class c. Note that the overall mean
is X̄ = 1

N

∑C
c=1

∑Nc

i=1 Logk X
i
c = Logk k = 0. In

the vector discriminant analysis one seeks the discrimi-
nant direction W which maximizes the Rayleigh quotient
R(w) = w>Bw/w>Sw where B and S are the between-
class and within-class covariance matrices respectively. This
vector-valued function can be rewritten for matrices as:

R(W ) =
trW>PB(W )

trW>PS(W )
, (1)

where B,S ∈ Rdm×dm are the between-class and within-
class covariance matrices. The class covariance matri-
ces are defined as: Bc = Nc(vec X̄c ⊗ vec X̄>c ), and
Sc =

∑Nc

i=1 vec (Logk X
i
c − X̄c)⊗ vec (Logk X

i
c − X̄c)

>.
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Then, the regularised class covariance matrices are given
by: B̃c(δ) = (1− δ)Bc + δ

∑C
c=1 Bc, S̃c(δ) = (1− δ)Sc +

δ
∑C
c=1 Sc and S̃c(δ, γ) = (1 − γ)S̃c(δ) + γ tr(S̃c(δ))I ,

where I is the identity matrix, the parameter δ controls the
degree of shrinkage of the individual class covariance ma-
trix estimates towards the pooled estimate, and γ controls
shrinkage towards a multiple of the identity matrix, in order
to alleviate the problem of matrix degeneration when taking
the inverse. Both parameters can be set in a range between
0 and 1. Finally, we have that B = 1

N

∑C
c=1 B̃c(δ) and

S = 1
N

∑C
c=1 S̃c(δ, γ).

The optimal W is obtained from reshaping the largest
eigenvectors of S−1B. Since S−1B has rank C − 1, there
areC−1 optima W1, . . . ,WC−1. Data can be projected onto
the discriminant space spanned by {Wj} by PWj (Logk X

i
c).

This corresponds to feature extraction of data onto the most
discriminant subspace.

We apply this projection operation to the reference sub-
space matrices Xc

i to generate reference vectors V i
c =

PWj (Logk X
i
c). When given an unknown bioacoustic signal

xin(t), we compute its SSA subspace basis Xin and map
it onto the discriminant tangent space to generate a vector
Vin; then we predict its corresponding bioacoustic class (e.g.
species) based on the nearest reference vector (1-NN) using
the canonical metric trV >inV

i
c .

3. EXPERIMENTAL RESULTS

In this section, we evaluate the validity of the proposed TSSA
through an experiment using the Anuran records dataset,
that was also used in [13]. It consists of 60 bioacoustic sig-
nals with different duration recorded in Amazon rainforest
containing anuran’s croaks and ribbits and various real back-
ground noises from the surrounding nature. Anura is the
name of an order of animals in the class Amphibia that in-
cludes frogs and toads, so the diversity of signal is complex.
The classes of this dataset consists of 10 species of anurans.

We evaluate TSSA against its conventional counterparts,
MSSA and GSSA. We performed a 10-fold cross-validation
by dividing the signals randomly, with 30 for training and 30
for test, and always ensuring that at least one signal of each
anuran species is present in both groups. The parameters were
varied in the following manner: the number of lagged vectors
n was varied from 10 to 50 and the dimension of SSA sub-
spaces were varied from 3 to 9.

The experimental results can be seen in Table 1. The accu-
racy refers to the average among all folds, and the standard de-
viation is calculated from the folds assuming a Gaussian dis-
tribution. TSSA outperforms the state-ofart methods: GSSA
by approximately 4.5% and MSSA by about 13.12%. This re-
sult is a compelling evidence that the discriminant mechanism
of the proposed method is able to enhance the performance
of bioacoustic classification in this subspace representation
paradigm.

Fig. 2. Plot of error as a function of the shrinkage parameters.

We have also investigated the variation of performance
due to changes on the shrinkage parameters γ and δ. The sub-
space dimension was fixed at m = 4 and the length of the
lagged vectors was fixed at d = 34, both of which showed
good results at the previous experiment. The plot on Fig. 2
shows the error rate variation when these parameter changed.
The blue dots indicate observed results, while the surface is
a graphic completion for visualisation. From the plot, we
can see that in general a low value of δ yields better results,
which is closer to a quadratic discriminant model. In addition
γ should not be too high or too low, and results around 0.4
yielded the best results.

Table 1. Results for the experiment with the Anuran data.
The accuracy refers to the average among all folds.

Methods Average (%) Std. Dev.
MSSA 62.88 4.08
GSSA 71.67 3.60
TSSA 76.00 4.39

4. CONCLUSIONS

In this paper we have proposed tangent singular spectrum
analysis (TSSA), an extension to MSSA, to address more ef-
fectively the classification of bioacoustic signals. The key
idea of our proposed method is to introduce a discrimina-
tory mechanism for class separation, utilising the extrinsic
matrix structure of the manifold instead of relying on a ker-
nel parameterisation of the Grassmannian. The subspaces are
mapped through the logarithmic map onto a tangent space
at the sample mean of the data. Then discriminant analy-
sis in matrix space is performed. Our method also inherits
various advantages of MSSA, such as low storage, consis-
tent compactness ratio selection, signal length free formula-
tion, and no need preprocessing techniques. The validity of
TSSA was demonstrated through a classification experiment
with the Anuran data where it outperformed the state-of-the-
art methods MSSA and TSSA.
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