
RANDOMLY WEIGHTED CNNs FOR (MUSIC) AUDIO CLASSIFICATION

Jordi Pons and Xavier Serra

Music Technology Group, Universitat Pompeu Fabra, Barcelona

ABSTRACT

The computer vision literature shows that randomly weighted neural
networks perform reasonably as feature extractors. Following this
idea, we study how non-trained (randomly weighted) convolutional
neural networks perform as feature extractors for (music) audio clas-
sification tasks. We use features extracted from the embeddings of
deep architectures as input to a classifier – with the goal to compare
classification accuracies when using different randomly weighted ar-
chitectures. By following this methodology, we run a comprehensive
evaluation of the current architectures for audio classification, and
provide evidence that the architectures alone are an important piece
for resolving (music) audio problems using deep neural networks.

Index Terms— random, neural networks, audio, ELM, SVM.

1. INTRODUCTION

Previous computer vision works show that the classification perfor-
mance delivered by random CNN features is correlated with the re-
sults of their end-to-end trained counterparts [1–3]. Thus meaning,
in practice, that one can bypass the time-consuming process of learn-
ing to evaluate a given architecture [1]. We build on top of this result
to evaluate current CNN architectures for audio classification: we
use the CNNs’ embeddings to construct feature vectors for a classi-
fier, with the goal to compare classification performances when dif-
ferent non-trained CNN architectures are used to extract features. To
the best of our knowledge, this is the first comprehensive evaluation
of randomly weighted CNNs for (music) audio classification [4–6].

Additionally, extreme learning machines (ELMs) [7–9] are
also closely related to our work. In short, ELMs are classifica-
tion/regression models1that are based on a single-layer feed-forward
neural network with random weights. They work as follows: first,
ELMs randomly project the input into a latent space; and then, learn
how to predict the output via a least-square fit. More formally, we
aim to predict:

Ŷ = W2 σ(W1X),

where W1 is the (randomly weighted) matrix of input-to-hidden-
layer weights, σ is the non-linearity, W2 is the matrix of hidden-to-
output-layer weights, and X represents the input. Training proceeds
as follows: 1) set W1 with random values; 2) estimate W2 via a
least-squares fit:

W2 = σ(W1X)+Y

where + denotes the Moore-Penrose inverse. Since no iterative
process is required for learning the weights, training is faster than
stochastic gradient descent [9]. Provided that we process audio sig-
nals with randomly weighted CNNs, ELM-based classifiers are a
natural choice for our study – so that all the pipeline (except the last
layer) is based on random projections that are only constrained by
the structure of the neural network.

In this work we evaluate the most used deep architectures for
(music) audio classification. In order to facilitate the discussion
around these architectures, we divide the deep learning pipeline into

1Support Vector Machines are also classification/regression models.

two parts: front-end and back-end. The front-end is the part that
interacts with the input signal in order to map it into a latent-space,
and the back-end predicts the output given the representation ob-
tained by the front-end. Note that one can interpret the front-end
as a “feature extractor” and the back-end as a “classifier”. Given
that we compare how several non-trained (random) CNNs perform
as feature extractors and we will use out-of-the-box classifiers to pre-
dict the classes, this literature review focuses in introducing the main
deep learning front-ends for audio classification. Front-ends are gen-
erally conformed by CNNs [10–14], since these can encode efficient
representations by sharing weights along the signal. Figure 1 depicts
the main CNN front-end paradigms, which can be divided into two
groups depending on the used input signal: waveforms [10, 12, 15]
or spectrograms [11, 13, 14]. Further, the design of the filters can be
either based on domain knowledge or not. For example, one lever-
ages domain knowledge when the frame-level single-shape2 front-
end for waveforms is designed so that the length of the filter is
set to be the same as the window length in a STFT [10]. Or for
a spectrogram front-end, it is used vertical filters to learn spectral
representations [16], or horizontal filters to learn longer temporal
cues [17]. Generally, a single filter shape is used in the first CNN
layer [10, 11, 16, 17], but some recent work reported performance
gains when using several filter shapes in the first layer [12–14, 18].
Using many filters promotes a more rich feature extraction in the first
layer, and facilitates leveraging domain knowledge for designing the
filters’ shape. For example: a frame-level many-shapes front-end for
waveforms can be motivated from a multi-resolution time-frequency
transform3perspective – with window sizes varying inversely with
frequency [12]; or, since it is known that some patterns in spec-
trograms are occurring at different time-frequency scales, one can
intuitively incorporate many vertical and/or horizontal filters to ef-
ficiently capture those in a spectrogram front-end [13, 14, 18]. On
the other hand, when domain knowledge is not used, it is common
to employ a deep stack of small filters, e.g.: 3×1 in the sample-level
front-end used for waveforms [15], or 3×3 in the small-rectangular
filters front-end used for spectrograms [11]. These models make
minimal assumptions over the local stationarities of the signal, so
that any structure can be learnt via hierarchically combining small-
context representations.

2. METHOD

Our goal is to study which CNN front-ends work best via evaluating
how non-trained models perform as feature extractors. Our eval-
uation is based on the traditional pipeline of features extraction +
classifier. We use the embeddings of non-trained (random) CNNs as
features: for every audio clip, we compute the average of each fea-
ture map (in every layer) and concatenate these values to construct
a feature vector [4]. The baseline feature vector is constructed from
20 MFCCs, their ∆s and ∆∆s. We compute their mean and standard
deviation through time, and the resulting feature vector is of size 120.
We set the widely used MFCCs + SVM setup as baseline. To allow

2Italicized names correspond to the front-end types in Figure 1.
3The Constant-Q Transform [19] is an example of such transform.

336978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Fig. 1. CNN front-ends for audio classification tasks – with examples of possible configurations for every design paradigm.

a fair comparison with the baseline, CNN models have ≈ 120 fea-
ture maps – so that the resulting feature vectors have a similar size
as the MFCCs vector. Further, we evaluate an alternative configura-
tion with more feature maps (≈3500) to show the potential of this
approach. Model’s description omit the number of filters per layer
for simplicity – full implementation details are accessible online.4

2.1. Features: randomly weighted CNNs
Except for the VGG model that uses ELUs as non-linearities [11],
the rest use ReLUs [20] – and we do not use batch normalization.
We use waveforms and spectrograms as input to our CNNs:
Waveform inputs — are of ≈ 29sec (350,000 samples at 12kHz):

· Sample-level: is based on a stack of 7 blocks that are composed
by a 1D-CNN layer (filter length: 3, stride: 1), and a max-pool layer
(size: 3, stride: 3) – with the exception of the input block which has
no max-pooling and its 1D-CNN has a stride of 3 [15]. Averages to
construct the feature vector are computed after every pooling layer,
except for the first layer that are computed after the CNN.

· Frame-level many-shapes: consists of a 1D-CNN layer with 5
filter lengths: 512, 256, 128, 64, 32 [12]. Note that out of this single
1D-CNN layer, 5 feature maps (resulting of the different filter length
convolutions) are concatenated. Due to that, every feature map needs
to have the same (temporal) size. For that reason, every filter’s stride
is of 32 and we use same padding to easily concatenate the feature
maps. Since this model is single-layered and it might be in disad-
vantage, we increase its depth via adding 3 more 1D-CNN layers
(length: 7, stride: 1) – where the last 2 layers have residual connec-
tions, and the penultimate layer’s feature map is down-sampled by
two (MP x2), see Figure 2. Averages to construct the feature vector
are calculated for each feature map after every CNN layer.

· Frame-level: consists of a 1D-CNN layer with a filter of length
512 [10]. Stride is set to be 32 to allow a fair comparison with
the frame-level many-shapes architecture. As in frame-level many-
shapes, we increase the depth of the model via adding three more
1D-CNN layers – as in Figure 2. Averages to construct the feature
vector are calculated for each feature map after every 1D-CNN layer.

4Reproduce our study: github.com/jordipons/elmarc

Fig. 2. Additional layers for the frame-level & frame-level many-
shapes architectures, similar to [10,21] (MP stands for max pooling).

Spectrogram inputs — are set to be log-mel spectrograms
(spectrograms size: 1376×965, being ≈ 29sec of signal).
Differently from waveform models, spectrogram models use no ad-
ditional layers to deepen single-layered CNNs because these already
deliver a good performance – and spectrogram-based CNN layers
have a stride of 1. As for the frame-level many-shapes model, we use
same padding when many filter shapes are used in the same layer:

· 7×96: consists of a single 1D-CNN layer with filters of length
7 that convolve through the time axis [10]. As a result: CNN filters
are vertical and of shape 7×96. Therefore, these filters can encode
spectral (timbral) representations. Averages to construct the feature
vector are calculated for each feature map after the 1D-CNN layer.

· 7×86: consists of a single 2D-CNN layer with vertical filters of
shape 7×86 [14,18]. Since its vertical shape is smaller than the input
(86<96), filters can also convolve through the frequency axis – what
can be seen as “pitch shifting” the filter. Consequently, 7×86 filters
can encode pitch-invariant timbral representations [14, 18]. Further,
since the resulting activations can carry pitch-related information,
we max-pool the frequency axis to get pitch-invariant features (max-
pool shape: 1×11). Averages to construct the feature vector are
calculated for each feature map after the max-pool layer.

· VGG: is based on a stack of 5 blocks combining 2D-CNN
layers (with small rectangular filters of 3×3) and max-pooling (of
shapes: 4×2, 4×3, 5×2, 4×2, 4×4, respectively) [11]. Averages to
construct the feature vector are computed after every pooling layer.

· Timbral: consists of a single 2D-CNN layer with many verti-
cal filters of shapes: 7×86, 3×86, 1×86, 7×38, 3×38, 1×38, see
Figure 3 (top) [14, 22, 23]. These filters can also convolve through
the frequency axis and, therefore, these can encode pitch-invariant
representations. Several filter shapes are used to efficiently cap-

5STFT parameters: window size = 512, hop size=256, and fs=12kHz.

337

ture different timbrically relevant time-frequency patterns. Further,
since the resulting activations can carry pitch-related information,
we max-pool the frequency axis to get pitch-invariant features (max-
pool shapes: 1×11 or 1×59). Averages to construct the feature vec-
tor are calculated for each feature map after the max-pool layer.

· Temporal: several 1D-CNN filters (of lengths: 165, 128, 64,
32) operate over an energy envelope obtained via mean-pooling the
frequency-axis of the spectrogram, see Figure 3 (bottom). By com-
puting the energy envelope in that way, we are considering high and
low frequencies together while minimizing the computations of the
model. Observe that this single-layered 1D-CNN is not operating
over a 2D spectrogram, but over a 1D energy envelope – therefore
no vertical convolutions are performed, only 1D (temporal) convo-
lutions are computed. Averages to construct the feature vector are
calculated for each feature map after the CNN layer.

· Timbral+temporal: combines both timbral and tempo-
ral CNNs in a single (but wide) layer, see Figure 3 [21].
Averages to construct the feature vector are calculated in the same
way as for timbral and temporal architectures.

Fig. 3. Timbral+temporal architecture (MP stands for max-pool).

As seen, the studied architectures are representative of the audio
classification state-of-the-art. For further details about the models
under study: the code is accessible online4, and a graphical concep-
tualization of the models is available in Figures 1, 2 and 3.

2.2. Classifiers: SVM and ELM
We study how several feature vectors (computed considering differ-
ent CNNs) perform for a given set of classifiers: SVMs and ELMs.
We discarded the use of other classifiers since their performance
was not competitive when compared to those. SVMs and ELMs are
hyper-parameter sensitive, for that reason we perform a grid search:

· SVM hyper-parameters: we consider both linear and rbf ker-
nels. For the rbf kernel, we set γ to: 2−3, 2−5, 2−7, 2−9, 2−11,
2−13, #features−1; and for every kernel configuration, we try sev-
eral C’s (penalty parameter): 0.1, 2, 8, 32.

· ELM’s6 main hyper-parameter is the number of hidden units:
100, 250, 500, 1200, 1800, 2500. We use ReLUs as non-linearity.

2.3. Datasets: music and acoustic events
· GTZAN fault-filtered version [24, 25]. Training songs: 443,

validation songs: 197, and test songs: 290 – divided in 10 classes.
We use this dataset to study the task of music genre classification.

· Extended Ballroom [26,27] – 4,180 songs divided in 13 classes.
10 stratified folds are randomly generated for cross-validation. This
dataset is to study how these models classify rhythm/tempo classes.

· Urban Sound 8K [28] – 8732 acoustic events divided in 10
classes. 10 folds were already defined for cross-validation. Since
urban sounds are< 4sec and our models accepts ≈ 29sec inputs, the
signal is repeated to create inputs of the same length. This dataset is
to study how these models classify natural (non-music) sounds.

6ELM’s implementation: github.com/zygmuntz/Python-ELM

3. RESULTS
Figures show average accuracies across 3 runs for every feature type,
listed on the right with the length of the feature vector. A t-test re-
veals which models are performing the best (H0: averages are equal).

3.1. GTZAN: music genre recognition

Fig. 4. Accuracy (%) results for the GTZAN dataset with random
CNN feature vectors of length ≈ 120.

Fig. 5. Accuracy (%) results for the GTZAN dataset with random
CNN feature vectors of length ≈ 3500.

The sample-level waveform model always performs better than
frame-level many-shapes (t-test: p-value�0.05). The two best per-
forming spectrogram-based models are: timbral+temporal and VGG
– with a remarkable performance of the timbral model alone. The
timbral+temporal CNN performs better than VGG when using the
ELM (≈3500) classifier (t-test: p-value=0.017); but in other cases,
both models perform equivalently (t-test: p-value>0.05). More-
over, the 7x86 model performs better than 7x96 when using SVMs
(t-test: p-value<0.05), but when using ELMs: 7x96 and 7x86 per-
form equivalently (t-test: p-value�0.05). The best VGG and tim-
bral+temporal models achieve the following (average) accuracies:
59.65% and 56.89%, respectively – both with an SVM (≈3500) clas-
sifier. Both models outperform the MFCCs baseline: 53.44% (t-test:
p-value<0.05), but these random CNNs perform worse than a CNN
pre-trained with the Million Song Dataset: 82.1% [15]. Finally,
note that although timbral and timbral+temporal models are single-
layered, these are able to achieve remarkable performances – show-
ing that single-layered spectrogram front-ends (attending to musi-
cally relevant contexts) can do a reasonable job without paying the
cost of going deep [14, 18]. Thus meaning, e.g., that the saved ca-
pacity can now be employed to learn additional representations.

3.2. Extended Ballroom: rhythm/tempo classification
The sample-level waveform model always performs better than
frame-level many-shapes (t-test: p-value�0.05). The two best
performing spectrogram-based models are: temporal and tim-
bral+temporal, but the temporal model performs better than tim-
bral+temporal in all cases (t-test: p-value�0.05) – denoting that

338

spectral cues can be a confounding factor for this dataset. More-
over, the 7x86 model performs better than 7x96 in all cases (t-test:
p-value<0.05). The best (average) accuracy score is obtained us-
ing temporal models and SVMs (≈3500): 89.82%. Note that the
temporal model clearly outperforms the MFCCs baseline: 63.25%
(t-test: p-value�0.05) and, interestingly, it performs slightly worse
than a trained CNN: 93.7% [29].

Fig. 6. Accuracy (%) results for the Extended Ballroom dataset with
random CNN feature vectors of length ≈ 120.

Fig. 7. Accuracy (%) results for the Extended Ballroom dataset with
random CNN feature vectors of length ≈ 3500

This result confirms that the architectures (alone) introduce a
strong prior which can significantly affect the performance of an au-
dio model. Thus meaning that, besides learning, designing effective
architectures might be key for resolving (music) audio tasks with
deep learning. In line with that, note that the temporal architecture
is designed considering musical domain knowledge – in this case:
how tempo & rhythm are expressed in spectrograms. Hence, its
good performance validates the design strategy of using musically
motivated architectures as an intuitive way to navigate through the
network parameters space [13, 14, 18].

3.3. Urban Sounds 8K: acoustic event detection
For these experiments we do not use the temporal model (with 1D-
CNNs of length 165, 128, 64, 32). Instead, we study the tim-
bral+time model – where time follows the same design as temporal
but with filters of length: 64, 32, 16, 8. This change is motivated
by the fact that temporal cues in (natural) sounds are shorter than
temporal cues in music.

The sample-level waveform model always performs better than
frame-level many-shapes (t-test: p-value�0.05). The two best per-
forming spectrogram-based models are: VGG and timbral+time –
but VGG performs better than timbral+time in all cases (t-test: p-
value�0.05). Also, the 7x86 model performs better than 7x96 in all
cases (t-test: p-value<0.075). The best (average) accuracy score is
obtained using VGG and SVMs (≈3500): 70.74% – outperforming
the MFCCs baseline: 65.49% (t-test: p-value<0.05), and perform-
ing slightly worse than a trained CNN: 73% (without data augmenta-

tion [30]). Finally, note that VGGs achieved remarkable results when
recognizing genres and detecting acoustic events – tasks where tim-
bre is an important cue. Therefore, one could argue that VGGs are
good at representing spectral features.

Fig. 8. Accuracy (%) results for the Urban Sounds 8k dataset with
random CNN feature vectors of length ≈ 120.

Fig. 9. Accuracy (%) results for the Urban Sounds 8k dataset with
random CNN feature vectors of length ≈ 3500

4. CONCLUSIONS

This study proposes a cheap way to evaluate CNN architectures
via comparing the obtained classification accuracies when using
different randomly weighted CNN architectures as feature extrac-
tors. The results we obtain are far from random, since: (i) ran-
domly weighted CNNs are, in some cases, close to match the ac-
curacies obtained by trained CNNs; and (ii) these are able to out-
perform MFCCs. This result denotes that the architectures alone
are an important piece of the deep learning solution and therefore,
searching for efficient architectures capable to encode the specifici-
ties of (music) audio signals might help advancing the state of our
field. In line with that, we have shown that (musical) priors em-
bedded in the structure of the model can facilitate capturing use-
ful (temporal) cues for classifying rhythm/tempo classes. Besides,
we show that for waveform front-ends: sample-level � frame-
level many-shapes > frame-level, as noted in the (trained) litera-
ture [12, 15]. Further, we show that for spectrogram front-ends:
7x96<7x86, as shown in previous (trained) works [18,31] – possibly
because via allowing the filters to convolve through the frequency
axis the model captures pitch-invariant timbral representations. Fi-
nally: timbral (+temporal/time) and VGG spectrogram front-ends
achieve remarkable results for tasks where timbre is important – as
previously noted in the (trained) literature [14]. Although our main
conclusions are backed by external results reported in the (trained)
literature, we leave for future work consolidating those via doing a
similar study considering trained models.

5. ACKNOWLEDGMENTS
This work is supported by the Maria de Maeztu Programme (MDM-
2015-0502), and we are grateful for the GPUs donated by NVidia.

339

6. REFERENCES

[1] Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh
Bhand, Bipin Suresh, and Andrew Y Ng, “On random weights
and unsupervised feature learning.,” in International Confer-
ence on Machine Learning (ICML), 2011, pp. 1089–1096.

[2] Amir Rosenfeld and John K Tsotsos, “Intriguing properties
of randomly weighted networks: Generalizing while learning
next to nothing,” arXiv preprint arXiv:1802.00844, 2018.

[3] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky,
“Deep image prior,” arXiv preprint arXiv:1711.10925, 2017.

[4] Keunwoo Choi, György Fazekas, Mark Sandler, and
Kyunghyun Cho, “Transfer learning for music classification
and regression tasks,” International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2017.

[5] Jaehun Kim, Julián Urbano, Cynthia Liem, and Alan Hanjalic,
“One deep music representation to rule them all?: A compar-
ative analysis of different representation learning strategies,”
arXiv preprint arXiv:1802.04051, 2018.

[6] Relja Arandjelovic and Andrew Zisserman, “Look, listen and
learn,” in IEEE International Conference on Computer Vision
(ICCV). IEEE, 2017, pp. 609–617.

[7] Wouter F Schmidt, Martin A Kraaijveld, and Robert PW Duin,
“Feedforward neural networks with random weights,” in Inter-
national Conference on Pattern Recognition. IEEE, 1992, pp.
1–4.

[8] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic,
“Learning and generalization characteristics of the random
vector functional-link net,” Neurocomputing, vol. 6, no. 2, pp.
163–180, 1994.

[9] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, “Ex-
treme learning machine: theory and applications,” Neurocom-
puting, vol. 70, no. 1-3, pp. 489–501, 2006.

[10] Sander Dieleman and Benjamin Schrauwen, “End-to-end
learning for music audio,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[11] Keunwoo Choi, George Fazekas, and Mark Sandler, “Auto-
matic tagging using deep convolutional neural networks,” In-
ternational Society for Music Information Retrieval Confer-
ence (ISMIR), 2016.

[12] Zhenyao Zhu, Jesse H Engel, and Awni Hannun, “Learning
multiscale features directly from waveforms,” arXiv preprint
arXiv:1603.09509, 2016.

[13] Jordi Pons and Xavier Serra, “Designing efficient architec-
tures for modeling temporal features with convolutional neural
networks,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017.

[14] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and
Xavier Serra, “Timbre analysis of music audio signals with
convolutional neural networks,” European Signal Processing
Conference (EUSIPCO), 2017.

[15] Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and Juhan
Nam, “Samplecnn: End-to-end deep convolutional neural net-
works using very small filters for music classification,” Applied
Sciences, vol. 8, no. 1, pp. 150, 2018.

[16] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng,
“Unsupervised feature learning for audio classification using
convolutional deep belief networks,” in Advances in Neural
Information Processing Systems (NIPS), 2009.

[17] Jan Schluter and Sebastian Bock, “Improved musical onset de-
tection with convolutional neural networks,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

[18] Jordi Pons, Thomas Lidy, and Xavier Serra, “Experimenting
with musically motivated convolutional neural networks,” in
International Workshop on Content-Based Multimedia Index-
ing (CBMI). IEEE, 2016, pp. 1–6.

[19] Judith C Brown, “Calculation of a constant q spectral trans-
form,” The Journal of the Acoustical Society of America, vol.
89, no. 1, pp. 425–434, 1991.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio, “Deep
sparse rectifier neural networks,” in International Conference
on Artificial Intelligence and Statistics, 2011, pp. 315–323.

[21] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M Schmidt,
Andreas F Ehmann, and Xavier Serra, “End-to-end learning for
music audio tagging at scale,” Workshop on Machine Learning
for Audio Signal Processing (ML4Audio) at NIPS, 2017.

[22] Jordi Pons, Rong Gong, and Xavier Serra, “Score-informed
syllable segmentation for a cappella singing voice with con-
volutional neural networks,” International Society for Music
Information Retrieval Conference (ISMIR), 2017.

[23] Rong Gong, Jordi Pons, and Xavier Serra, “Audio to score
matching by combining phonetic and duration information,”
International Society for Music Information Retrieval Confer-
ence (ISMIR), 2017.

[24] George Tzanetakis and Perry Cook, “Musical genre classifica-
tion of audio signals,” IEEE Transactions on speech and audio
processing, vol. 10, no. 5, pp. 293–302, 2002.

[25] Corey Kereliuk, Bob L Sturm, and Jan Larsen, “Deep learning
and music adversaries,” IEEE Transactions on Multimedia,
vol. 17, no. 11, pp. 2059–2071, 2015.

[26] Ugo Marchand and Geoffroy Peeters, “Scale and shift invariant
time/frequency representation using auditory statistics: Appli-
cation to rhythm description,” in International Workshop on
Machine Learning for Signal Processing. IEEE, 2016, pp. 1–6.

[27] Pedro Cano, Emilia Gómez, Fabien Gouyon, Perfecto Herrera,
Markus Koppenberger, Beesuan Ong, Xavier Serra, Sebastian
Streich, and Nicolas Wack, “ISMIR 2004 audio description
contest,” Music Technology Group of the Universitat Pompeu
Fabra, Technical Report, 2006.

[28] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in ACM International Conference
on Multimedia, Orlando, FL, USA, Nov. 2014.

[29] Yeonwoo Jeong, Keunwoo Choi, and Hosan Jeong, “Dlr: To-
ward a deep learned rhythmic representation for music content
analysis,” arXiv preprint arXiv:1712.05119, 2017.

[30] Justin Salamon and Juan Pablo Bello, “Deep convolutional
neural networks and data augmentation for environmental
sound classification,” IEEE Signal Processing Letters, vol. 24,
no. 3, pp. 279–283, 2017.

[31] Sergio Oramas, Oriol Nieto, Francesco Barbieri, and Xavier
Serra, “Multi-label music genre classification from audio, text,
and images using deep features,” International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2017.

340

		2019-03-18T11:19:01-0500
	Preflight Ticket Signature

