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ABSTRACT
In this paper, we consider a cross-modal retrieval scenario of West-
ern classical music. Given a short monophonic musical theme in
symbolic notation as query, the objective is to find relevant audio
recordings in a database. A major challenge of this retrieval task
is the possible difference in the degree of polyphony between the
monophonic query and the music recordings. Previous studies for
popular music addressed this issue by performing the cross-modal
comparison based on predominant melodies extracted from the
recordings. For Western classical music, however, this approach
is problematic since the underlying assumption of a single pre-
dominant melody is often violated. Instead of extracting the melody
explicitly, another strategy is to perform the cross-modal comparison
directly on the basis of melody-enhanced salience representations.
As the main contribution of this paper, we evaluate several concep-
tually different salience representations for our cross-modal retrieval
scenario. Our extensive experimental results, which have been made
available on a website, comprise more than 2000 musical themes
and 100 hours of audio recordings.

Index Terms— Music Information Retrieval, Evaluation, Fea-
ture Representations

1. INTRODUCTION

Ongoing digitization efforts create large amounts of music data in
different modalities, such as audio and video recordings, symbolic
representations, or graphical sheet music. Accessing this data in a
convenient way requires flexible retrieval strategies that are able to
cope with the different modalities. In the last decades, many sys-
tems for audio retrieval based on the query-by-example paradigm
have been suggested. Given a fragment of a symbolic or acoustic
music representation as query, the task is to automatically retrieve
documents from a music database containing parts or aspects that are
similar to the query [1–4]. One such retrieval scenario is known as
query-by-humming [5,6], where the user specifies a query by singing
or humming a part of a melody. The objective is to identify all au-
dio recordings (or other music representations) that contain a melody
similar to the specified query. In related retrieval scenarios, a short
symbolic query is given, e.g., taken from a musical score, and the
task is to identify another symbolic music representation [7, 8] or an
audio recording [9–13].

Many pieces from Western classical music contain short melodies
or musical gestures that are especially prominent and memorable
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(e.g., the famous “Fate Motif” at the beginning of Beethoven’s Sym-
phony No. 5). Finding such musical themes in audio recordings with
computational methods constitutes a challenging retrieval scenario.
In particular, given a symbolic representation of a musical theme as
query, the retrieval task is to find all recordings within a database of
classical music recordings that contain this theme. Major challenges
are due to the differences in modality (symbolic vs. audio), tuning,
transposition, tempo, and degree of polyphony between the query
and the database documents [12].

In this paper, we built upon the results presented in [12], where
the database and the queries are compared on the basis of chroma
features. We take this work as a baseline for our follow-up study. In
particular, we address a major issue of the previous work, which is
the compensation of the difference in degree of polyphony between
the queries and the database documents. Instead of deriving chroma
features from the full spectral content, we consider in this paper
several kinds of enhanced time–frequency (TF) representations, so
called salience representations, which put emphasis on certain tonal
frequency components [14, Chapter 8] and enhance melodic struc-
tures in the spectrogram [15–19]. Previous studies [6] first extracted
the predominant melody and bass line of the audio on the basis of
salience representations. Then these representations are mapped to
chroma features for performing the retrieval. However, in Western
classical music, the underlying assumption of a single predominant
melody is often violated, which has a negative impact on the ro-
bustness of melody extraction algorithms [20]. We propose not to
extract the melodies, but to directly map the salience representations
to chroma features for the retrieval.

The main contribution of this paper is to evaluate several state-
of-the-art salience representations—originally designed for melody
extraction—for the given retrieval scenario, and to conduct an ex-
tensive quantitative study exploring the potential of these represen-
tations. In Section 2, we describe the data set, used for the ex-
periments. The feature representations, used throughout this study,
are introduced in Section 3. In Section 4 we describe the retrieval
procedure, report on results, and discuss effects of the representa-
tions on the retrieval results by means of a new evaluation metric,
called separation indicator. The results of our experiments have
been made publicly available on an interactive website.1 Finally,
Section 5 presents a short conclusion.

2. BARLOW-MORGENSTERN DATA SET

The data set considered in this paper is inspired by the book “A Dic-
tionary of Musical Themes” by Harold Barlow and Sam Morgen-
stern (BM) [21], which contains roughly 10,000 musical themes of

1https://www.audiolabs-erlangen.de/resources/
MIR/2019-ICASSP-BarlowMorgenstern
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Queries Database Composers
# Mean Dur. Total Dur. # Mean Dur. Total Dur. #

2045 00:00:09 05:00:03 1114 00:06:25 119:15:19 52

Table 1. Overview of the data set. Duration format: hh:mm:ss.

instrumental Western classical music. Published in the year 1949,
this dictionary is an early example of indexing music by its promi-
nent themes. It was designed as a reference book for trained mu-
sicians and professional performers to identify musical pieces by a
short query fragment. Most of the 10,000 themes listed in the book
have also been available as machine-readable versions (MIDI) on the
internet.2

In our experiments, we use the data set BM-Medium, which was
also used in previous work [12]. As shown in Table 1, the data
set consists of 2045 themes from the BM book. For this paper, we
substantially extended the data set by annotating the occurrences of
these themes in an audio collection, including the durations and pos-
sible transpositions. We designed the audio database in such a way
that for each query, there is exactly one relevant music recording
in the database. Note that there can be more queries for a given
audio recording: e.g., for the first movement of Beethoven’s Sym-
phony No. 5 there are six themes. The newly annotated audio
material enables us to perform large-scale retrieval experiments in
a controlled and systematic fashion, focusing on the monophonic–
polyphonic matching problem. All queries of the data set can be
accessed through the accompanying website.1

3. FEATURE REPRESENTATIONS

In this paper, we consider various TF representations that emphasize
specific tonal frequency components. The considered approaches,
which are well-known in the literature, are listed in Table 2 with links
pointing to implementations. Details and properties of the TF rep-
resentations are discussed in the next paragraphs. We convert these
representations to time–chroma representations by suitably mapping
the frequency bins to the twelve chromatic pitch classes, see [14,22,
23]. In our study, we use a consistent frame rate of 10 Hz (applying
median aggregation for representations with a higher frame rate).
Furthermore, all frames of the chroma features are `2-normalized.
Figure 1 visualizes the TF representations (left column) and their
derived chroma features (right column) for a music example.

In the case of a MIDI query, the feature extraction is straight-
forward, see Figure 1a. While using a single feature representation
for the MIDI query, we compare several chroma variants for the au-
dio recordings. As a baseline, we use a TF representation SIIR sim-
ilar to a spectrogram with a logarithmically-spaced frequency axis
by using a bank of elliptic IIR filters [24, Chapter 3]. This rep-
resentation was also used for the experiments in [12]. Obviously,
this approach is influenced by the complete spectral content that is
present in the audio, such as harmonics or noise-like signal compo-
nents. For instance, the beginning of CIIR in Figure 1b has strong
energy in the G-band, which corresponds to the fundamental fre-
quency of the first note, but also in the D-band and in the B-band,
which correspond to the third and fifth harmonics, respectively. A
well-known approach that puts more emphasis on the predominant
melody’s fundamental frequency is harmonic summation, which is,
e.g., used in MELODIA [16]. As shown in Figure 1c (first column),

2Unfortunately, the page has been put offline. It is still reach-
able with the Wayback Machine without access to the MIDI files:
https://web.archive.org/web/20160209045946/http:
//www.multimedialibrary.com/barlow/index.asp
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Fig. 1. Overview of different TF representations and their derived
chroma features for the beginning of the first Promenade of Modest
Mussorgsky’s Pictures at an Exhibition. The first half of this exam-
ple presents monophonic melody and the second half repeats it along
with a homophonic brass section.

harmonic summation enhances the predominant melody in SMEL,
but also introduces additional noise. Note that this representation (as
well as many of the other salience representations) was designed to
serve as input to a subsequent melody extraction step. Further tra-
ditional signal processing approaches include a source-filter signal
model SSFM, introduced by Durrieu et al. [17], and a combination
of MELODIA with Durrieu’s source-filter model SBG1, proposed by
Bosch and Gómez [18]. For extracting SBG1, we use the threshold
parameters BG1 that turned out to be specifically suited for orches-
tral music [25].

Recently, deep learning became ubiquitous for computing
salience representations. For instance, Balke et al. [15] used a
fully-connected neural network that was trained on jazz music for
computing a salience representation specifically tailored to this kind
of music, denoted as SDNN1. Since deep learning is highly data-
adaptive and the network was not trained on Western classical music
at all, we re-trained the model, following the training procedure as
described in [15], using the publicly available Orchset data set [28].
We applied pitch shifting as well as time scale modification to gen-
erate several versions of the data set in different tempi and keys.
As a result of this augmentation process, the data used for training
was increased from 23.5 minutes to 820.5 minutes. The resulting
salience representation is denoted as SDNN2. A more advanced deep
learning approach for computing a salience representation SCNN

was introduced by Bittner et al. [19]. They proposed a convolutional
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Ref. Source for Implementation

SIIR [24, 26] http://github.com/librosa/librosa [27]

SMEL [16] http://www.upf.edu/web/mtg/melodia

SSFM [17] http://github.com/juanjobosch/
SourceFilterContoursMelodySBG1 [18]

SDNN1 [15] http://www.audiolabs-erlangen.de/resources/MIR/
2017-ICASSP-SoloVoiceEnhancementSDNN2

SCNN [19] http://github.com/rabitt/ismir2017-deepsalience

Table 2. Table of implementations, used for computing the salience
representations.

neural network architecture that uses a custom feature representation
as input, called harmonic CQT. The network was trained on classi-
cal, popular, as well as jazz music and outperformed state-of-the-art
approaches in melody extraction.

Most salience representations were designed for a subsequent
melody extraction step. We also perform this step on the three repre-
sentations SMEL, SBG1 and SCNN, with the respective methods pro-
posed by the original literature [16, 18, 19]. We consider all frames
as voiced, since this is the case for most queries.3 The extracted
melodies are mapped to chroma features, just like for the TF rep-
resentations, resulting in C∗MEL, C∗BG1 and C∗CNN. As we will see
in our experiments in Section 4.2, the melody extraction step is not
beneficial within our retrieval scenario.

4. EXPERIMENTS

In this section, we first summarize our retrieval procedure and de-
scribe our experiments. We then study how the different feature
representations from Section 3 can cope with the difference in the
degree of polyphony between monophonic symbolic theme (query)
and polyphonic music recordings (database documents). Finally, we
evaluate the approaches in depth.

4.1. Retrieval Procedure

We formalize our retrieval task following [12]. Similar procedures
for synchronizing sheet music and audio recordings were described
in the literature [9, 11, 14]. Let Q be a collection of musical
themes, where each element Q ∈ Q is regarded as a query. Fur-
thermore, let D be a set of audio recordings, which we regard as
a database collection consisting of documents D ∈ D. Given a
query, the retrieval task is to identify the semantically corresponding
documents. Note that in our experimental setting, there is only a
single relevant document for each query. To compare a symbolic
query Q ∈ Q to a database document D ∈ D, we convert the
query and the document into chroma sequences. Then, we use a
standard technique known as Subsequence Dynamic Time Warping
(SDTW) to compare the query with subsequences of the docu-
ment, see [14, Chapter 7]. In particular, we use the cosine distance
(for comparing `2-normalized chroma feature vectors), the step
size condition Σ := {(2, 1), (1, 2), (1, 1)}, as well as the weights
wvertical = 2 and whorizontal = wdiagonal = 1 in the SDTW.

As the result of SDTW, one obtains a matching function ∆Q
D for

a query Q and document D. Local minima of this function point to
locations with a good match between the queryQ and a subsequence
of the document D. For a given query Q, the retrieval task can be
solved by computing matching curves for all documents D and by

3Additional experiments (not reported here) showed that automatic voic-
ing estimation leads to a drastic drop in retrieval quality in all three cases.

Top-01 Top-05 Top-10 Top-20 Top-50 MRR

CIIR 0.470 0.593 0.648 0.699 0.792 0.531
CMEL 0.231 0.363 0.430 0.500 0.599 0.299
CSFM 0.742 0.818 0.839 0.863 0.894 0.779
CBG1 0.754 0.835 0.861 0.885 0.913 0.792
CDNN1 0.417 0.534 0.576 0.633 0.708 0.474
CDNN2 0.552 0.661 0.701 0.748 0.800 0.605
CCNN 0.693 0.788 0.823 0.853 0.896 0.739

C∗MEL 0.421 0.522 0.574 0.630 0.714 0.474
C∗BG1 0.734 0.816 0.843 0.867 0.899 0.774
C∗CNN 0.680 0.773 0.802 0.837 0.881 0.724

Table 3. Retrieval results for BM-Medium.

taking the minimum δQD ∈ R≥0 for each of the matching functions
∆Q

D . The values of these minima yield a ranking of the database
documents, which can then be presented in form of an ordered list.
The position of a document D ∈ D in this list is called the rank of
D. The rank of the relevant document is denoted as r ∈ N.

Having a single relevant document for each query, the top-K
evaluation metric gives the proportion of queries for which r ≤ K
for a given K ∈ N. Furthermore, we report the mean reciprocal
rank (MRR), which is the average of 1/r over all queries.

4.2. Retrieval Results

In this study, we want to focus on the aspect of monophonic–
polyphonic matching. In [12], it was shown that factors such as
tuning, transposition, and query length have a major impact on the
retrieval results. To reduce the effect of these factors, we modify
each MIDI query such that its duration and key matches the cor-
responding audio excerpt in the database. We could reproduce the
results reported in [12] for their smaller data set based on 177 queries
(best top-1 rate 0.684) using the conventional chroma representa-
tion CIIR. However, we could achieve a significant improvement
reaching a top-1 rate of 0.876 by using the enhanced feature repre-
sentation CBG1. This means that about 19 % more queries achieve
a top-1 rank compared to previous work for this subset due to the
improved feature representation.

We now systematically analyze the impact of the various TF rep-
resentations on the retrieval results by considering the much larger
data set BM-Medium. The results are summarized in Table 3. The
first row of the table shows the evaluation metrics for the baseline
CIIR. The top-1 rate (0.470) means that even for this simple ap-
proach nearly half of the themes achieve a rank of 1. About 70 %
of the queries yield a rank of at least 20 (top-20: 0.699). Harmonic
summation performs worse, yielding a top-1 rate of 0.231 for CMEL.
We want to note that it is not fair to directly compare this represen-
tation with the others, since harmonic summation amplifies many
TF components that do not belong to the predominant melody. The
source-filter model CSFM brings a major boost in performance with
a top-1 rate of 0.742 and a top-20 rate of 0.863. CBG1, which is
a combination of harmonic summation and the source-filter model,
further increases the top-1 rate to 0.754. About three quarter of the
2045 themes yield a rank of 1 and about 89 % achieve a rank of at
least 20 (top-20: 0.885), which is a major improvement compared to
the baseline approach. The fully-connected network CDNN1, trained
on jazz music, falls below the baseline for this task with a top-1 rate
of 0.417. However, the version CDNN2, which was re-trained on
classical music, shows an increase of about 14 % in the top-1 rate
(0.552) compared to the original version of the network. This re-
confirms the obvious fact that such neural networks are highly data

333



1
16

1
8

1
4

1
2 1 2 4

ρ

C∗CNN

C∗BG1

C∗MEL

CCNN

CDNN2

CDNN1

CBG1

CSFM

CMEL

CIIR(c)

< 1
16

1
8

1
4

1
2 1 2 ≥4

ρ

0

200

400

#
qu

er
ie

s(b)
0

200

400
#

qu
er

ie
s(a)

Fig. 2. (a) Histogram of ρ values for BM-Medium for CIIR and (b) CBG1. (c) Boxplots of ρ values for all representations. Queries to the left
of the red line (ρ = 1) yield a top-1 match.

dependent. Note that both networks have a simple architecture and
do not exploit temporal context. The more advanced neural net-
work approach CCNN, which involves convolutional layers covering
more audio context, performs better than the simple networks. CCNN

achieves a top-1 rate of 0.693 and is close, but yet worse than the best
model-based approaches CSFM (0.742) and CBG1 (0.754).

In further experiments we also performed melody extraction as
an intermediate step, which turned out to typically worsen the overall
retrieval result for our Western classical music scenario. Only CMEL

improved (increase of top-1 rate from 0.231 to 0.421 with C∗MEL),
but still this result is below the baseline. In case of the other repre-
sentations the results slightly worsen, i.e. we observe a drop of top-1
rate from 0.754 (CBG1) to 0.734 (C∗BG1) or from 0.693 (CCNN) to
0.680 (C∗CNN).

As another contribution of this paper, we set up an extensive
website presenting the ranks and sonifications for all 2045 queries, as
well as visualizations of the corresponding feature representations.1

4.3. Discussion of Matching Quality

The rank-based evaluation metrics are rather coarse indicators of the
matching quality. In the following, we want to examine it on a more
fine-grained level. To this end, we introduce a novel evaluation met-
ric called separation indicator. For a given query Q ∈ Q, we obtain
an ordered list of documents (D1, D2, D3, . . . ). The position of the
relevant document in this list is denoted as rank r ∈ N. The match-
ing quality is good when the matching cost of the relevant document
δQDr

is significantly lower than the matching cost for the non-relevant
document with the highest rank. The separation indicator ρ ∈ R≥0

quantifies the quality of the matching as follows:

ρ =

{
δQD1

/δQD2
if r = 1,

δQDr
/δQD1

otherwise.
(1)

Intuitively speaking, a low ρ below 1 implies a good matching qual-
ity since it indicates a distinct separation between the matching costs
of the relevant document (with a rank of 1) and the first non-relevant
document (with a rank of 2). The smaller ρ, the better the relevant
document is separated from the non-relevant documents. A ρ close
to 1 indicates that the top-1 decision is unstable for this query, and
ρ > 1 implies that the query Q does not achieve rank 1. The dis-
tribution of ρ-values across all queries is a good indicator for the
stability of top-1 decisions.

Figure 2a and b show histograms of ρ values for the baseline
CIIR and the best performing representation CBG1. For CIIR, the
ρ-values are centered around 1, indicating instability for the top-1
decisions. For CBG1, the distribution is skewed to the left, which
indicates that the increase in top-1 rate of CBG1 is not due to small

random-like changes of the matching costs, but to a substantial im-
provement in matching quality. Figure 2c shows boxplots of the
distributions of ρ values for all considered feature representations.
In this figure, the first and fourth row correspond to the histograms
shown in Figure 2a and b, respectively. For CMEL (second row), the
distribution is strongly centered just above 1.0, meaning that most
queries do not achieve a rank of 1. The corresponding melody ex-
traction C∗MEL (eighth row) has a strong effect on the distribution:
Though the median is located to the right of the red line (i.e. less
than half of the queries achieve rank 1), it shows that the queries
cover a wider range of matching qualities. The best performing rep-
resentations CSFM, CBG1, and CCNN (third, fourth, and seventh row)
show similar tendencies: Most queries are located on the left side of
the red line (ρ < 1) and they are covering a wide range of ρ val-
ues in that region including queries with high matching quality of
ρ < 1/2. The comparison of CBG1 and C∗BG1 reveals that melody
extraction improves the separation indicator for many queries. How-
ever, the top-K rates are worse for C∗BG1. This may be explained as
follows: For cases, where the music has a low degree of polyphony,
the intermediate melody extraction step lowers the separation indi-
cator significantly. But, in more complex cases the step does more
harm than good.4 As an effect, the overall retrieval result is better
without melody extraction.

5. CONCLUSIONS

In this study, we considered a cross-modal retrieval scenario with the
goal to find the relevant audio recording in a database, given a mono-
phonic symbolic theme of Western classical music as query. Extend-
ing previous work [12], we showed that salience representations,
originally designed for melody extraction, are suited for the given
task. Furthermore, unlike related work [6], we showed that in our re-
trieval scenario it is beneficial to avoid an explicit melody extraction
step and to perform the chroma reduction directly on the salience
representations. In an extensive quantitative study, we compared var-
ious state-of-the-art salience representations and showed their ben-
efits and limitations for the given task. Especially, the salience rep-
resentation by Bosch and Gómez [18] turned out to be well-suited
for monophonic–polyphonic matching. Additionally, we introduced
a newly annotated data set consisting of more than 2000 queries and
100 hours of audio. The results of our experiments have been made
available on an accompanying website.1 Possible future research di-
rections will deal with the design of specialized representations for
further improving the retrieval results, including the adaptation of
deep learning approaches.

4See https://www.audiolabs-erlangen.de/resources/
MIR/2019-ICASSP-BarlowMorgenstern/example for two illus-
trative examples.
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on a source-filter model using pitch contour selection,” in Pro-
ceedings of the 13th Sound and Music Computing Conference
(SMC), Hamburg, Germany, 2016, pp. 67–74.

[19] Rachel M. Bittner, Brian McFee, Justin Salamon, Peter Li, and
Juan P. Bello, “Deep salience representations for F0 tracking in
polyphonic music,” in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), Suzhou,
China, 2017, pp. 63–70.

[20] Justin Salamon, Emilia Gómez, Daniel P. W. Ellis, and Gaël
Richard, “Melody extraction from polyphonic music signals:
Approaches, applications, and challenges,” IEEE Signal Pro-
cessing Magazine, vol. 31, no. 2, pp. 118–134, 2014.

[21] Harold Barlow and Sam Morgenstern, A Dictionary of Musical
Themes, Crown Publishers, Inc., revised edition edition, 1975.

[22] Mark A. Bartsch and Gregory H. Wakefield, “Audio thumb-
nailing of popular music using chroma-based representations,”
IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 96–104,
2005.
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