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ABSTRACT

Traditional adaptive binaural beamforming algorithms for hearing
devices often assume that the target talker is known or can be de-
rived from the listener’s look direction. When this assumption is
violated, the traditional beamforming algorithms often produce dis-
torted target speech and less than optimal noise and interference sup-
pression. Recent advances in electroencephalography (EEG) and its
applications to auditory attention decoding have offered a potential
solution for tracking the listeners auditory attention in a multi-talker
environment [2–5]. In this paper, we propose a unified model for
joint auditory attention decoding and adaptive binaural beamform-
ing, and solve the problem using an iterative optimization approach.
The proposed algorithm has two advantages over the existing algo-
rithms. First, the optimization objective aims to balance auditory
attention alignment, target speech distortion, noise and interference
suppression. Secondly, there is no need to estimate the speech enve-
lope of each talker from the noisy and reverberant mixture which is
a very challenging problem in practice. The proposed algorithm was
evaluated using a newly recorded EEG database for a multi-talker,
noisy and reverberant environment [6]. The evaluation results con-
firm the benefits of the proposed algorithm.

Index Terms— EEG signals, auditory attention, microphone ar-
ray signal processing, acoustic beamforming

1. INTRODUCTION

In a multi-talker noisy and reverberant environment, humans have
the unique capability to separate different sound sources and attend
to a single source while ignoring other sound sources. In commonly
available hearing devices, the listener’s auditory attention is how-
ever unknown to the devices. And misalignment between the lis-
tener’s attention and the target speaker can cause significant perfor-
mance degradation of the speech enhancement algorithms in the de-
vices. Understanding human auditory attention and improving tar-
get speech understanding in a multi-talker environment, such as in a
cocktail party [7], has been an active research topic for decades [8–
12]. Recent technology advances in electroencephalography (EEG)
offers a potential non-invasive solution for tracking listener’s audi-
tory attention in such a environment. Using the signals collected
from a scalp EEG system, various computational models [13–17]
have been proposed to design a so-called auditory attention decoder,
which attempts to reliably decode the auditory attention of a listener
in a multi-talker environment.

Part of this wok is presented as a conference talk at ASA Spring 2018 in
May this year [1].

In modern hearing aids, array signal processing algorithms [18–
20] exploit the spatial diversity provided by the microphones for im-
proved speech intelligibility and listening comfort. However, such
algorithms including the multi-channel Wiener filter [21] and the
linearly constrained minimum variance (LCMV) beamformer [22]
often require the a priori knowledge of the auditory attention of lis-
tener. The multi-channel Wiener filter requires voice activity detec-
tion (VAD) for the attended talker and the LCMV beamformer needs
to know which acoustic transfer function (ATF) corresponds to the
attended talker. A common assumption that the target talker comes
from the listener’s look direction is not always true in practice.

Recent research has started incorporating the listener’s auditory
attention inferred from EEG signals into speech enhancement algo-
rithms [2–4]. However, directly combining the auditory attention de-
coding results with beamforming algorithms has the following short-
comings. First, EEG signals usually have low signal to noise ratio
which makes the attention decoder susceptible to decoding errors.
Such errors can significantly degrade the speech enhancement al-
gorithm performance. Secondly, the auditory attention decoder re-
quires the source signal envelopes. In practice when such source
signals are not available, an extra source separation processing is
needed to extract the envelope of each source from the mixture,
which itself is a challenging problem.

In this work, we propose a unified model for joint auditory atten-
tion decoding and binaural beamforming utilizing the tool of nonlin-
ear optimization. The optimization objective aims for a balanced de-
sign to align auditory attention, control speech distortion, and reduce
noise and interferences. Specifically, the attention is aligned by max-
imizing the Pearson correlation between the envelope of beamform-
ing output and the linearly transformed EEG signal. The noise is re-
duced by minimizing the energy of the beamforming output subject
to linear constraints suppressing the interferences and controlling the
target speech distortion. Using a newly recorded EEG database for
a multi-talker, noisy and reverberant environment, we compare the
performance of the proposed algorithm with a baseline algorithm [4],
which performs the attention decoding and beamforming at separate
stages. The intelligibility-weighted signal to interference and noise
ratio improvement (IW-SINRI) and spectral distortion (IW-SD) are
used as performance metrics [21] to demonstrate the benefit of the
proposed algorithm.

2. PROBLEM FORMULATION

Consider a listener equipped with a pair of binaural hearing aids with
M microphones and L EEG electrodes. The listener attempts to lis-
ten to one target talker in the presence of K − 1 competing talkers.
The mic signals in the time-frequency domain can be expressed as
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y(`, ω) =

K∑
k=1

hk(ω)sk(`, ω) + n(`, ω), (1)

where y(`, ω) denotes the microphone signal at frame ` and fre-
quency band ω (ω = 1, 2, · · · ,Ω); hk(ω) is the ATF [18] of the k-th
speech source and sk(`, ω) is the corresponding speech signal; and
n(`, ω) is the background noise in time-frequency domain. Further,
ei(t) is used to denote the recorded EEG signals of EEG electrode i
(i = 1, 2, · · · , L) at time instance t.

We consider the binaural beamforming problem of linearly com-
bining signals received at theM microphones using the attention in-
formation from the EEG signals. Specifically, consider a time period
where the beamformer does not change and let w(ω) be the beam-
former coefficients at frequency band ω, then the output signals are
z(`, ω) = wH(ω)y(`, ω). The EEG signals ei(t) are utilized to
direct the beamformer to point to the attended talker (see Fig. 1).

Fig. 1. Illustration of the proposed beamforming system.

We first give a brief description of a linear auditory attention
decoder proposed in the literature [13, 16]. Let sa(t) denote the cor-
responding envelope of attended speech signal. A linear regression
model is used to learn a linear mapping that reconstructs sa(t) from
EEG signals {ei(t)}Li=1. Specifically, let {g∗i (τ)} be the learned lin-
ear mapping coefficients, then sa(t) is reconstructed as ŝa(t) =∑L
i=1

∑τ2
τ=τ1

g∗i (τ)ei(t + τ), where τ1, τ2 are specified time de-
lays. The decoder is then simply to compare the Pearson correlation
between ŝa(t) and the envelope of each source. The one with the
largest Pearson correlation is decoded as the attended source.

As a baseline algorithm for performance comparison purpose in
Section 3, we propose to use auditory attention decoding followed
by a LCMV beamformer, or AAD-LCMV for short [4]. In the source
separation stage, this algorithm applies two different LCMV beam-
formers, i.e., use linear constraints to preserve one source and reject
another, to separate the two source signals. The decoding is then
done by comparing the Pearson correlations of the separated signals
with respect to the constructed ŝa(t). The decoded attention is fi-
nally used to perform a final LCMV beamforming the produce the
output signal.

2.1. Joint Attention Decoding and Beamforming

Ideally, the beamformer enhances the attended source and sup-
presses the noise and interference. In such a case, the envelope
of beamformer output can be used to replace the envelope of the
attended source: sa(t) for the purpose of Pearson correlation calcu-
lation. This leads to one of the criteria for designing the beamformer
by maximizing the Pearson correlation between the transformed
EEG signal ŝa(t) and the envelope of beamforming output.

To do so, we first give a mathematical description of calculating
the envelope of beamforming output in terms of the microphone sig-
nals and beamforming weights. We assume the beamforming output
of frame ` corresponding to time sample indexes t, t + 1, · · · , t +

N − 1, where N is the number of samples per STFT frame. Let
z(t), z(t + 1), · · · , z(t + N − 1) denote the beamforming outputs
in time domain with respect to frame `. The beamforming output
at this frame envelope are actually the absolute values of the corre-
sponding analytic signal z̃(t), z̃(t + 1), · · · , z̃(t + N − 1), which
can be represented by discrete Fourier transformation (DFT) [23] in
terms of beamforming weights {w(ω)} as

z̃(t)
z̃(t+ 1)

...
z̃(t+N − 1)

 = DWFDH


w(1)Hy(`, 1)
w(2)Hy(`, 2)

...
w(Ω)Hy(`,Ω).

 (2)

In (2), DH ∈ RΩ×Ω is a diagonal matrix for forming one-sided
analytic signal [23], F ∈ CΩ×Ω is the inverse of DFT matrix, and
DW ∈ RΩ×Ω is a diagonal matrix for compensating the synthesis
window used in STFT. For notational simplicity, (2) can be com-
pactly expressed as

z̃(t+ n) = wHu`,n, n = 0, 1, · · · , N − 1, (3)

where w = [w(1)H ,w(2)H , · · · ,w(Ω)H ]H ∈ CMΩ is the con-
catenated beamforming vector and u`,n ∈ CMΩ is determined by
{y(`, ω)} and coefficients in matrixDW ,F , andDH . Based on (2)
and (3), the envelopes of beamforming output of frame l are repre-
sented as |z̃(t+ n)| = |wHu`,n|, n = 0, 1, · · · , N − 1.

Finally the Pearson correlation between ŝa(t) and |z̃(t)| is a
function of beamformer, denoted as κ({w(ω)}):

κ({w(ω)}) =

∑t2
t=t1

s̄a(t)z̄(t)

σsσz
, (4)

where s̄a(t) = ŝa(t)− Λ(ŝa(t′)), z̄(t) = |z̃(t)| − Λ[|z̃(t′)|], σs =√
Λ[s̄2

a(t)], σz =
√

Λ[z̄2(t)].Here Λ[x(t)] , 1
t2−t1+1

∑t2
t=t1

x(t)

is the average operation. Notice (4) assumes s̄a(t) and |z̄(t)| are syn-
chronized with a same sampling rate which is not true in practice.
Hence, an extra synchronization procedure is needed but does not
change the mathematical formula of κ({w(ω)}), i.e., down sam-
pling z̃(t) from (3) according to the sampling rates of the audio and
EEG signals.

Maximizing κ({w(ω)}) guides the beamformer to focus on
the attended source based on the auditory attention information in
the EEG signals. Besides the protection of attended source, another
beamformer design criterion is noise reduction. These two design
criteria can be formulated as a combined objective function in the
optimization problem and can be presented as follows:

(1) Attention assignment maximizing Pearson correlation: The first
criterion of beamformer design is to assign the attention to different
sources based on the information from the EEG signals. By exploit-
ing the a priori information of the ATFs {hk(ω)}, we propose to
enforce a set of equality constraints, w(ω)Hhk(ω) = αk,∀ω. This
leads to the following problem

max
{w(ω)},α

κ({w(ω)}) s.t. w(ω)Hhk(ω) = αk, ∀k, ω, (5a)

1Tα = 1, αk ≥ 0, ∀k. (5b)

In (5), α = [α1, α2, · · · , αK ]T are the weights of combining the
K source signals in the beamforming output. And we refer it as the
listener’s auditory attention assignment among the K sources.

(2) Noise energy reduction: The energy of the background noise is
reduced in minimum variance sense as
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min
w(ω)

E
[
|w(ω)Hn(ω)|2

]
≡ min
w(ω)

w(ω)HRn(ω)w(ω), (6)

where Rn(ω) , E [n(ω)n(ω)] is the auto-correlation matrix of
background noise.

Combining (6) into the objective function in (5), we obtain the
proposed EEG-assisted beamforming formulation as follows:

min
{w(ω)},α

Ω∑
ω=1

w(ω)HRn(ω)w(ω)︸ ︷︷ ︸
noise reduction

−µκ({w(ω)})︸ ︷︷ ︸
attention assignment

−γ‖α‖2︸ ︷︷ ︸
sparsity

s.t. (5a), (5b).

(7)

In (7), we add an extra sparsity regularization term −γ‖α‖2 on the
attention assignment among sources. The nonnegative parameters µ
and γ are pre-determined and used to obtain a desired tradeoff be-
tween noise reduction and attention assignment based on EEG sig-
nals in the beamformer design.

2.2. Optimization Algorithm
Problem (7) is a noncovex problem due to the nonlinear functions
−µκ({w(ω)}) and −γ‖α‖2. As its constraints have a favorable
form, i.e., separable with respect to {w(ω)} across frequency bands
ω in (5a), we adopt the well-known gradient projection method
(GPM) [24] to solve Problem (7). The solver can be efficiently
implemented by exploiting the separable property. With a proper
stepsize rule (i.e., we use Armijo rule [24] in the experiment), the
GPM solves problem (7) with guaranteed convergence (Proposition
2.3 in [24]). Since the major computation effort in the GPM for
problem (7) is a projection onto the polyhedron defined by (5a)
and (5b), we use the alternating direction method of multiplier
(ADMM) [25] to solve the projection subproblem, which has a
parallel implementation for primal updates with respect to {w(ω)}
in closed-forms. In short, the dominate computation complexity is
O(Ω(M3 + KM2)) per GPM iteration. As the GPM and ADMM
are standard algorithms, detailed derivation of solving Problem (7)
is omitted due to space limitation.

2.3. Adaptive Beamforming Implementation

In an adaptive beamformer formulation, the beamformer {w(ω)} is
updated based on the new noise estimate and EEG signals in a new
frame. In this subsection, we provide an adaptive updating scheme
for the beamforming formulation in (7).

Suppose at time t, the latest EEG signals {ei(t′)}, t′ = t −
T, t− T + 1, . . . , t are used to update the Pearson correlation func-
tion κ({w(ω)}). For the convenience of presentation, we denote
κ({w(ω)}) at time t as κt({w(ω)}). Further, the noise correlation
matrix at time t is denoted asRn,t(ω), and the objective function in
(7) at time t is denoted by ft({w(ω)},α), i.e., ft({w(ω)},α) ,∑Ω
ω=1w(ω)HRn,t(ω)w(ω)− µκt({w(ω)})− γ‖α‖2.

Let us further introduce notation x , ({w(ω)},α). By the dis-
cussion in Section 2.2, the optimal x from minimizing ft(x) can be
solved by GPM. At iteration r, the GPM updates are

x̄ = [xr − s∇frt ]+ (8a)

xr+1 = xr + λr(x̄− xr), (8b)

where ∇frt is the gradient of function ft(x) at xr , [·]+ denotes
the projection operation onto the constraint set (5b) and (5a), s is a
pre-determined positive scalar, and λr is the stepsize determined by
the Armijo rule. In addition, due to the limited computation abil-
ity of hearing aids, it is necessary to reduce the computation cost of
the adaptive implementation of the GPM updates (8) in an efficient
manner. Hence we propose the following adaptive updating scheme

(Algorithm 1) based on (8), where the solution of previous time win-
dow serves as the initial point for the current time window updates.
This implementation is described in Table 1.

Algorithm 1 GPM Based Adaptive Updating Scheme
1: for time t = 0, 1, . . . , do
2: Update objective function ft(x);
3: Compute the gradient of ft(x);
4: Specify initial point x0 = ({wt−1(ω)},αt−1)
5: Fixed number of GPM updates (8);
6: Update ({wt(ω)},αt).
7: end for

3. EVALUATION
3.1. EEG Database

We collected EEG data from 12 normal-hearing subjects with signed
consent in a multi-talker, noisy and reverberant environment. A set
of binaural audio stimuli were generated using a set of ATFs for a
simulated noisy and reverberant room. A room of size 8m×10m
with height 3.6m is used in the simulation. The reverberation time
is set to be 0.6 second. The hearing aids wearer is located at the
center of the room. Each hearing aid has 2 microphones with 7.5mm
spacing. There are 2 sources: one on the left and one on the right,
with both being 1m away from the subject. The background babble
noise was generated using sixteen loudspeakers distributed equally
on the circle 2 meters away from the subject. The talkers were set
to the same level and the babble noise is 5dB lower than the voice
of each talker. The audio stimuli were presented to the subject using
a set of ER-3 insert earphones at a loud but comfortable level in a
sound-treated and semi-electrically shielded sound booth.

Each subject was instructed to perform a binaural listening task
and attend to one of the talkers at a time. Each subject listened to
stories with total duration of 20 minutes. Each story was split into
multiple 1-minute segments. Each segment was chosen in a logical
stopping point in the context of the story. Therefore no story segment
ended in the middle of a word or phrase. The subjects were told to
attend either the left talker or the right talker for the whole duration
of a segment, and were not allowed to switch their attention within
a segment. Thus, each segment had two stimuli speech tracks, one
that will be referred to as the attended stimuli, and the other being
the unattended stimuli. A 63-channel scalp EEG system was used to
record the subjects response at a sampling frequency of 10 kHz. All
recording was done on BrainVison Products hardware.

3.2. Evaluation Setup

In this section, we evaluate the performance of the proposed
algorithm on the EEG database described in Section 3.1. The
intelligibility-weighted signal-to-interference and noise ratio im-
provement (IW-SINRI) and intelligibility-weighted spectral distor-
tion (IW-SD) are used as performance metrics [21].

In the evaluation, the EEG signals are down-sampled to 20 Hz.
During the training stage for {gi(τ)}, all L = 63 EEG channels
are used in the regression model and the latency of EEG signals is
specified as 0 ∼ 250 ms, which corresponds to τ = 0, 1, · · · , 5 for
20 Hz sample rate. The regularization parameter for the regression
model is fixed to be 5 × 10−3 [16]. The leave-one-out cross vali-
dation among the segments is used to train the coefficients {g∗i (τ)}.
In the beamformer, a 512-point FFT with 50% overlap is used in
STFT (Hanning window). Both the proposed and AAD-LCMV ap-
proaches utilize the anechoic relative transfer functions in the equal-
ity constraints and the correlation matrix {Rn(ω)} is estimated by
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sample averaging from a 5 seconds noise-only time period. In the
EEG database presented in Section 3.1, the ground-truth direction of
the attended source includes both the left and the right. We always
compare the beamforming output to the front microphone on the far-
side of the ground-truth. Due to the space limitation, the result of
comparing to front microphone of the near-side is omitted.

3.3. Evaluation Results
In this section, we present the evaluation results. We choose two
subjects only for illustration purpose since the algorithm performs
similarly on all subjects. These two subjects are purposely chosen
to have different levels of noise in the EEG signals: with 30 second
segments, the decoding accuracy of the first subject is 93.02% and
the second subject is 76.08%.

We first study the behavior of the proposed algorithm with off-
line implementation, where we divide those one-minute records into
30s segments and each segment is used for evaluation. We set µ =
100 and γ = 0, 10, 100. The IW-SINRI and IW-SD versus Pearson
correlation difference ∆ρ = ρatt − ρunatt is plotted in Fig. 2. One in-
teresting observation is the continuous output of the IW-SINRI and
IW-SD values in the proposed algorithm versus the bimodal distri-
bution of that from the AAD-LCMV algorithm. In the proposed
algorithm, the parameter γ can be increased to increase influence of
the sparsity constraints and leads to a pattern that is similar to the
AAD-LCMV algorithm.
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Fig. 2. IW-SINRI and IW-SD distributions (Sub. 2).

Then, we study the behavior of proposed algorithm in real time
with an adaptive implementation. Each one-minute recording is se-
lected as one trial for evaluation. EEG signals within a time window
of length 10 seconds is used to update the beamformer. The time
window is shifted every 2 seconds and 5 iterations of the GP are
used for updating {w(ω)} and α. The parameters µ and γ are spec-
ified as µ = 100 and γ = 0, and the initial value of α is set as
α1 = α2 = 0.5.

The average IW-SINRI and IW-SD for all subjects over time are
plotted in Fig. 3. The vertical lines correspond to one standard devi-
ation of the 1-minute segments. Because the shortest segment is 54s
and the algorithm needs 10s to generate result, the figures only show
data between 10s∼54s. It can be observed that the proposed algo-
rithm has similar IW-SINRI in some places and better in other places
and slightly improved IW-SD than the AAD-LCMV algorithm, but
it achieves smaller variation among segments due to the joint formu-
lation.

To further understand the advantage of the proposed algorithm,
we plot one representative segment for each subject in Fig. 4. In
the cases where the decoding error happens at a sparse rate, the pro-
posed joint algorithm enhances the attended talker consistently while
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Fig. 3. Ave. IW-SINRI and IW-SD (Top: Sub. 1; Bottom: Sub. 2).

the AAD-LCMV is very susceptible to noise in the EEG signals and
produces large errors in IW-SINRI or IW-SD when the attention de-
coding is inaccurate.
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Fig. 4. IW-SINRI and IW-SD of representative segments (Top: Sub.
1; Bottom: Sub. 2).

4. CONCLUSION

This paper proposes a unified optimization model for joint auditory
attention decoding and adaptive binaural beamforming, with the
aim of balancing auditory attention alignment, target protection, and
noise suppression. Furthermore, the proposed algorithm does not
need to estimate the speech envelope of each talker from the noisy
and reverberant mixture. A gradient projection based algorithm is
proposed to efficiently solve the proposed optimization problem.
The evaluation on a recorded EEG database in a multi-talker, noisy
and reverberant environment demonstrates benefit of the proposed
algorithm. As part of the future work, we plan to extend our al-
gorithm evaluation to more realistic situations include attention
switching. We also plan to explore the listener’s response and adap-
tation to such an algorithm in a close-loop setup when enhanced
speech signals are presented to the listener in real-time.
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