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ABSTRACT
Despite significant advancements of deep learning on sepa-
rating speech sources mixed in a single channel, same gender
speaker mix, i.e., male-male or female-female, is still more
difficult to separate than the case of opposite gender mix.
In this study, we propose a pitch-aware speech separation
approach to improve the speech separation performance. The
proposed approach performs speech separation in the fol-
lowing steps: 1) training a pre-separation model to separate
the mixed sources; 2) training a pitch-tracking network to
perform polyphonic pitch tracking; 3) incorporating the es-
timated pitch for the final pitch-aware speech separation.
Experimental results of the new approach, tested on the
WSJ0-2mix public dataset, show that the new approach im-
proves speech separation performance for both same and
opposite gender mixture. The improved performance in
signal-to-distortion (SDR) of 12.0 dB is the best reported
result without using any phase enhancement.

Index Terms— speech separation, deep clustering, per-
mutation invariant training, pitch tracking

1. INTRODUCTION

Speech separation [1] has been the focus for over several
decades. Thanks to the developments of deep learning, we
have witnessed exciting progress towards solving this mys-
terious cocktail party effect. Specially, the invention of deep
clustering [2, 3, 4] and permutation invariant training [5] have
dramatically improved the performance of single-channel,
speaker independent, multi-speaker speech separation. Re-
cently, their combinations, i.e., chimera network [6, 7] and
computational auditory scene analysis (CASA) approach [8],
have become the state-of-the-art short-time Fourier transform
(STFT) based systems. Moreover, another interesting work
named time-domain audio separation network (TasNet) [9],
which performs speech separation in the time domain instead,
established a new state-of-the-art.

In deep clustering (DPCL) [2], a deep recurrent neural
network (RNN) is trained to transform each time-frequency
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(T-F) bin to a high dimensional discriminative embedding
space where T-F bins belong to the same speaker to be closer
to each other and further away otherwise. In this embedding
space, a clustering algorithm (e.g., K-means) is applied to
identify the clusters. Finally, a binary mask according to the
clustering results is constructed to separate the mixed speech.
On the other hand, permutation invariant training (PIT) [5]
directly pools over all possible permutation for the mixing
sources and uses the permutation with the lowest error to
update the network. Then separated speech can be directly
available by PIT without an extra clustering step. In addition,
PIT shows the comparable performance with DPCL [5].

Although all the aforementioned works have achieved im-
pressive performance over the traditional signal processing
methods in single-channel speech separation. We find that the
same-gender mixed speech separation is harder than opposite-
gender case and the separation result of the same-gender mix-
ture is often worse than the opposite-gender mixture by about
3 dB in signal-to-distortion ratio (SDR) [10]. Moreover, we
also find that separating female-female (FF) mixture is more
challenging than male-male (MM) mixture.

As we know, voicing is produced by regular opening
and closure of vocal folds and the detailed geometry of vo-
cal folds is somewhat speaker-specific [11]. In most cases,
the pitch of speech corresponds very nearly to the vibra-
tion frequency of vocal folds. Considering the nature of
multi-speaker speech separation, which aims at separating
overlapped speech from multiple speakers, it’s natural to con-
template pitch information from specific speakers to further
improve the performance.

We have noticed that there are some studies [12, 13] suc-
cessfully integrating pitch information to music separation.
But to the best of our knowledge, the integration of pitch
information in speech separation has not been explored and
polyphonic pitch tracking still should be an arguably unsolved
open problem. Liu et al. [14] have explored uPIT-based multi-
speaker pitch tracking and they adopted the pitch tracking
as a classification problem. In this paper, we investigate a
regression approach to polyphonic pitch tracking and pro-
pose a pitch-aware approach to single-channel, speaker inde-
pendent, multi-speaker speech separation. The proposed ap-
proach performs speech separation in the following steps: 1)
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training a pre-separation model to separate the mixed sources;
2) training a pitch-tracking network to perform polyphonic
pitch tracking; 3) incorporating the estimated pitch for the fi-
nal pitch-aware speech separation. Our experimental results
show that pitch information is a key element to lead tangi-
ble improvements when combined with conventional STFT-
domain frameworks. We also strongly believe that pitch is
also helpful for the time-domain speech separation.

2. MODEL DESCRIPTION

2.1. Pitch-Aware Speech Separation

A block diagram of the proposed two-stage pitch-aware
speech separation framework is depicted in Fig. 1. In the first
pitch tracking stage, a deep clustering model [2] is trained to
do deep embedding. Then a trainable component is trained
to do clustering (i.e., learning mask for each source). After
masking, another component performs pitch tracking for each
source. In the second speech separation stage, the estimated
pitch from a well-trained pitch estimation model will be aug-
mented with the corresponding mixture as the input to final
separation model.

Mixture

Deep 
Embedding

Clustering
(Masking)

Pitch
Tacking

Speech 
Separation

Source 1

Source N

...

Splicing Permuting

2. Speech Separation Stage

1. Pitch Tracking Stage

Fig. 1. A block diagram of the proposed framework. The
solid green rectangular parts are trainable.

For deep embedding component, the network computes a
unit-length embedding vector vi ∈ R1×D corresponding to
the i-th T-F element, and yi ∈ R1×C is a one-hot label vector
indicating which source in the mixture dominates the T-F bin
i, where D is the embedding dimension and C is the number
of source. Vertically stacking these, we form an embedding
matrix V ∈ RTF×D, and a label matrix Y ∈ RTF×C . The
embeddings are learned by minimizing the following objec-
tive function:

LDPCL(V, Y ) = ‖V V T − Y Y T ‖2F
= ‖V TV ‖2F − 2‖V TY ‖2F + ‖Y TY ‖2F ,

(1)

where ‖ · ‖2F is the squared Frobenius norm.
Unlike DPCL++ [3], we adopt 2 feed-forward layers with

ReLU activation to perform soft K-means. After clustering,
masks are applied to the mixture to get the final pre-separated
sources. During clustering component training, we optimize
the following phase-sensitive spectrum approximation (PSA)
loss function:

LPSA = min
π∈P

1

B

∑
c

∥∥∥M̂π(c) � |X|

− (|Sc| � cos(∠Sc − ∠X))
∥∥∥2
2
,

(2)

where P is the set of permutations {1, . . . , C}, B is the total
number of frames over all sources, M̂c is the c-th estimated
mask, |X| is the mixture magnitude, |Sc| is the magnitude
of the c-th reference source, � denotes element-wise matrix
multiplication, ∠Sc is the phase of the c-th source, ∠X is the
mixture phase, and ‖·‖22 is the squared Euclid norm. For pitch
tracking component, the uPIT loss is also adopted. Finally,
any sensible separation frameworks can be used for final sep-
arating model after augmenting the predicted pitch with the
mixture.

2.2. Pitch Tracking and Permutation

Fundamental frequency (F0) is an intrinsic property of peri-
odic signals. Here, as shown in Fig. 2, we can train a shared
pitch-tracking model for all the separated sources or train C
separate models for each source, where C is the number of
sources.

Source 1 Source 2

LSTM + DNN LSTM + DNN

Sigmoid Sigmoid

F01 F02  VUV1  VUV2 

LSTM + DNN

Sigmoid

F01 F02  VUV1  VUV2 

Clustering

(Masking)

Shared Model Non-Shared ModelNon-Shared Model

Fig. 2. Pitch-tracking component. Non-Shared Model: Sep-
arating pitch-tracking model for each source. Shared-Model:
All sources share the same pitch-tracking model.

Recall that the order of the speakers in the target does
not need to be the same as the order of the speakers in the
output of network because of the permutation problem [2].
After pitch tracking, the order of the predicted pitch is also
unknown. If splicing the estimated pitch with the mixture
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Fig. 3. Three permutation schemes for permuting component.

directly, the neural network may need to learn the relation-
ship between the random-order input pitch and the random-
order output separated sources. As shown in Sec. 3.2, this
bi-directional uncertainty will make the pitch ineffective in
speech separation. Thus for the effective pitch-aware speech
separation system, a permutation component is added be-
tween two stages.

In Fig 3, three different permutation schemes are shown
to set the order of the input in the separating stage.

• Oracle: We assume we know the procedure of mixture
creation and the pitch of the source with the ideal high-
est signal-to-noise ratio (SNR) will be augmented next
to the mixture. Similar to other sources.

• Random: The pitches of mixture will be randomly per-
muted and augmented with the mixture.

• Energy: The pitch of the source with the predicted
highest average energy will be the first augmented
feature to the mixture. Similar to other sources.

3. EVALUATION

3.1. Experimental setup

We evaluated our proposed methods on the widely used and
publicly available WSJ0-2mix corpus [2]. It contains 20,000,
5,000 and 3,000 two-speaker mixtures in its 30 hours train-
ing, 10 hours validation and 5 hours test sets, respectively.
The mixtures are generated at random signal-to-noise ratios
(SNR) between -2.5 dB and 2.5 dB. Moreover, 49 male and
51 female speakers in training and validation sets are avail-
able during training, while 16 speakers in the test set are to-
tally unseen. The sampling rate is 8 kHz. The window length
is 32 ms and the hop size is 8 ms. The square rooted Hanning
window is employed as the analysis and synthesis window.
A 256-point STFT is performed to extract 129-dimensional
magnitude input features.

In order to keep the same configurations with previous
work [3, 5], our DPCL-based model contains 4 BLSTM lay-
ers with 300 units in each direction and PIT-based model con-
tains 3 BLSTM layers with 896 units in each direction. A
dropout of 0.3 is applied on each BLSTM layer except the

last one and a dropout of 0.1 or 0.4 is applied between the
final LSTM layer and feed-forward layer. The networks are
trained with 8 full-length utterances parallel processing us-
ing Adam [15] algorithm. All systems are implemented using
PyTorch [16].

3.2. Separation with Ideal Pitch

In this section, we show the potential of pitch-aware speech
separation. When the oracle pitch information is available,
the SDR results are reported in Table 1. Note that, for some
systems [3, 4, 5], their results are SDR improvement (SDRi),
while all of our results and some latest results [6, 7] are re-
ported in SDR. So we manually add 0.2 dB to their final re-
sults although the SDR result of the mixture is about 0.15 dB.
Moreover, the reproduced result is slightly different from the
original DPCL [3] performance which is about 10.5 dB. It
may due to the fact that the input feature is linear magni-
tude, the network is trained starting from random initializa-
tion and processing with the full-length utterance instead of
400-frame segments. And for uPIT [5], our configurations
of the frame shift, hop size and window type are the same
with DPCL instead of the original uPIT. Our reproduced re-
sults show that separating the same-gender mixture is more
challenging than separating the opposite-gender mixture and
separating the female-female mixture is most challenging.

From Table 1, we can find both DPCL-based model and
uPIT-based model can give good results. With the ideal
pitch-aware augmentation, the gap between the same-gender
(SG) mixture, i.e., female-female (FF) and male-male (MM)
mixture, and the opposite-gender mixture, i.e., male-female
(MF) mixture, is reduced. The average performance can also
be further improved. Here, we also find pitch-aware speech
separation is sensitive to the order of pitches because of bi-
directional uncertainty. Moreover, ideal pitch combined with
uPIT performs better than DPCL combined with ideal pitch
(13.4 vs. 12.2). This could be because DPCL needs to pro-
duce embedding and perform an extra clustering step. The
DPCL’s final performance may depend on the embedding
dimension and the clustering algorithm.
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Table 1. SDR (dB) performance with different level of ideal
pitch. “Random”, “Energy” and “Oracle” represent the order
of pitches. “*” means our reproduced results.

Approaches MF FF MM SG AVG
DPCL [3] - - - - 10.5
DPCL* 11.8 8.3 9.2 8.9 10.4

+ Random 11.9 8.5 9.4 9.2 10.5
+ Energy 12.5 12.6 11.6 11.9 12.2
+ Oracle 12.5 12.5 11.6 11.8 12.2

uPIT [5] - - - - 9.6
uPIT* 11.3 7.1 7.9 7.7 9.5

+ Random 11.5 7.2 8.1 7.8 9.7
+ Energy 13.7 13.9 12.8 13.1 13.4
+ Oracle 13.7 13.8 12.8 13.0 13.3

Table 2. VUV error rates (%) and RMSE of F0 for WSJ0-
2mix validation and test set in the first pitch estimation stage.

# Parames (×106) 14.48 14.84
Shared Model Y Y N N
Joint Training Y N Y N

Validation VUV Err (%) 5.9 5.6 5.9 5.9
F0 RMSE (Hz) 12.6 12.7 12.9 13.0

Test VUV Err (%) 6.1 5.8 6.2 6.2
F0 RMSE (Hz) 14.6 14.6 15.0 14.8

3.3. Pitch-Aware Separation Results

We adopt the baseline DPCL model as our deep embedding
model, and two feed-forward layers with 300 units and ReLU
activation as our clustering model. As for pitch estimating
model, one LSTM layer with 300 hidden cells, one feed-
forward layer with sigmoid activation which predicts voiced
and unvoiced (VUV) flag, and one linear layer which predicts
F0, are adopted. In addition, the parameters of pitch estimat-
ing model can be shared or non-shared by each sources. In all
of our experiments, we use RAPT [11] algorithm to extract
the ground-truth F0 and VUV labels from the clean sources.

For pitch estimation, the deep embedding component,
clustering component and pitch tracking component can be
trained step by step. Moreover, when training the next com-
ponent, the previous component(s) can be jointly trained
or frozen. If previous part(s) are trainable, we denote this
strategy as joint training. Table 2 shows the performance
of pitch tracking. We can predict F0 and VUV well after
pre-separation. When we use shared pitch-tracking model to
predict the pitch of each source, the results are slightly better
than using 2 separate models to estimate the pitch of each
source separately, because the training data for the shared
model is twice in size comparing to the non-shared model.
Furthermore, joint training does not yield improvement, but
with longer training time. Thus we select the shared model
without joint training as our final first stage’s model.

Table 3. Comparison with other systems on WSJ0-2mix on
SDR (dB).

Approaches MF FF MM SG AVG
DPCL++ [3] 12.2 - - 9.6 11.0
ADANet [4] - - - - 11.0
uPIT-ST [5] 12.4 - - 7.7 10.2
Chimera++ [6] - - - - 11.2
CASA-E2E [8] 12.4 - - 9.8 11.2
one-stage 12.1 9.1 9.6 9.5 10.8
two-stage

+ DPCL 12.1 9.0 9.7 9.5 10.8
+ uPIT 13.3 10.1 10.8 10.6 12.0

T/S 11.4 6.5 7.8 7.5 9.4

In Table 3, we list the SDR performance of different sys-
tems. If we use the pre-separation stage’s masking results
as separated sources, the SDR is 10.8 dB, which is slightly
worse than Chimera++ [6]. Concatenating predictive pitch
and mixed feature as the input to the final separation model,
the average SDR is 10.8 dB when we use DPCL as second
separation model. When we use uPIT as the final separation
model, it improves the performance to 12.0 dB, which is a
new state-of-the-art result without using the phase enhance-
ment. Moreover, inspired by parallel wavenet [17, 18], we
also tried teacher-student (T/S) learning [19] framework to
learn some knowledge from ideal pitch-aware model. The
best T/S result, which is shown in Table 3, is worse than that
of uPIT.

4. CONCLUSION AND DISCUSSION

In this paper, we investigate a pitch-aware approach for
single-channel speech separation. We show that pitch in-
formation can be instrumental for further improving the sep-
aration performance. Significant improvements are obtained
by training the deep separation model with the estimated pitch
info. Recently, time-domain separation and phase reconstruc-
tion were proposed to further improve the performance by
alleviating the phase error in reconstruction and achieved
a new state-of-the-art separation performance. Our work
here aims at improving the accuracy of separated magnitude,
which can be refined in our future work by combining it
with the time-domain approach and incorporating the phase
reconstruction process.
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