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ABSTRACT

We study the problem of semi-supervised singing voice sep-
aration, in which the training data contains a set of samples
of mixed music (singing and instrumental) and an unmatched
set of instrumental music. Our solution employs a single map-
ping function g, which, applied to a mixed sample, recovers
the underlying instrumental music, and, applied to an instru-
mental sample, returns the same sample. The network g is
trained using purely instrumental samples, as well as on syn-
thetic mixed samples that are created by mixing reconstructed
singing voices with random instrumental samples. Our results
indicate that we are on a par with or better than fully super-
vised methods, which are also provided with training samples
of unmixed singing voices, and are better than other recent
semi-supervised methods.

Index Terms— Singing voice separation, Adversarial
training, Semi-supervised learning

1. INTRODUCTION

The problem of separating a given mixed signal into its com-
ponents without direct supervision is ubiquitous. For exam-
ple, in single cell gene expression conducted in cancer re-
search, one obtains a gene expression that contains both the
cancer cell of interest and the expression of immune cells that
attach to it. In what is known in biology as gene expression
deconvolution [1], one would like to obtain the expression of
the cancer cell itself, while only having access to a dataset
of such mixed readings and another dataset containing gene
expression profiles of immune cells.

In the task of singing voice separation, which is the fo-
cus of this work, examples of mixed music, which contains
both singing and instrumental music, are abundant. It is also
relatively easy to label parts of the song where no singing
is present. However, it is much harder to separate out pure
voice samples. Without such samples, one cannot use the su-
pervised methods that were suggested for this separation task.

In this work, we propose a novel method for performing
the separation. The method is based on applying a learned
function twice: once on the mixtures, in order to recover esti-
mated singing voice samples, and once on synthetic mixes, in
which the reconstructed singing samples are crossed with real

instrumental samples from the training set. The advantage of
these crosses over the original mixed samples is that the un-
derlying components of these mixed samples are known, and,
therefore, added losses can be applied, when training the sep-
arating function on them.

2. RELATED WORK

Single-channel source separation is a long-standing task
which has been researched extensively. Classical works on
blind source separation include Single-Channel ICA [2] and,
specifically in singing voice separation, RPCA [3]. These
methods utilize hand-crafted priors on the sources, such as a
low rank assumption on the instrumental music.

The problem of singing voice separation is often studied
in the supervised case, where the mixed samples are provided
with the target source. Often, a simple masking model in the
spectral domain is assumed and the desired source b is given
by a point-wise multiplication of the mixed signal a and some
mask m, i.e., b = a�m, where � is the Hadamard product.
In our work, we use a network g such that b ≈ a − g(a),
where the architecture of g includes the masking, i.e., g(a) =
a�m(a), for some subnetwork m with outputs in [0, 1].

The GRA3 method [4], similarly to ours, estimates the
mask m directly from the mixed sample a. This is done us-
ing an ensemble of four deep neural networks, trained with
different losses. The architecture we use is of the type com-
monly used for the autoencoding of images. Similar architec-
tures are used in other work to directly estimate all the sources
from the mixtures, e.g., [5, 6].

The GRU-RIS-L method of Mimilakis et al. [7], em-
ploys RNNs of stochastic depth in order to recover the time-
frequency mask. The usage of RNNs allows for efficient
modeling of longer time dependencies of the input data. This
is extended in [8] (MaDTwinNet) by introducing a technique
called Twin Net, which regularizes the RNNs. Our analysis
of long sequences is segment by segment and does not exploit
long range dependencies.

Adversarial training using GANs [9] is a powerful method
for unconditional image generation. GANs are composed of
two parts: (i) a generator g that synthesizes realistic images,
and (ii) a discriminator d that distinguishes real from fake im-
ages. The objective of the generator is to create images that
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are realistic enough to fool the discriminator. The objective
of the discriminator is to detect the fake images. The method
was later extended to perform unsupervised image-to-image
mapping [10]. In this setting, the generator is conditioned
on an input image from the source domains and generates
a “fake” sample in the target domain. As in the uncondi-
tional setting, the discriminator attempts to differentiate be-
tween real and generated images. Adversarial training was
used for supervised source separation, where the distribution
of each of the mixture components is known and modeled by
a GAN, by Stoller et al. [11] and Subkhan et al. [12]. The
adversarial training was motivated as being better able to deal
with correlated sources. Semi-supervised approach using ad-
verserial training was used by Higuchi et al [13] for the task
of speech enhancement.

In the setting of Semi-supervised audio source separation,
in which we work, the task is to separate mixtures of two
sources given mixed samples as well as samples from only
one of the sources. Previous solutions were typically based
on NMF [14] or the related PLCA [15].

The most similar method to ours is NES [16], which sep-
arates mixed samples into a sum of two samples: one from an
observed domain and one from an unobserved domain. The
method consists of an iterative process: (i) estimation of sam-
ples from the unobserved distribution; (ii) synthesis of mixed
signals by combining training samples from the observed do-
main and the estimated samples from the unobserved one;
(iii) training of a mapping from the mixed domain to the ob-
served domain. It was demonstrated in [16] that due to its
iterative nature, NES is sensitive to the initialization method.
Our method, in contrast, performs a non-iterative end to end
training that includes the synthetic mixtures as part of the net-
work. This also allows us to apply additional losses, such as
GAN based losses and the constraint that learned function g
is idempotent (g ◦ g = g) [17]. As can be seen in Sec. 5, our
results are significantly stronger than those obtained by [16].

3. METHOD

In the problem of semi-supervised separation, the learning
algorithm is provided with unlabeled datasets from two do-
mains, a domain of mixtures A and a domain of observed
components C. There also exists a target domain B, from
which no samples are presented. The goal is to learn a func-
tion g : A → C, which maps a sample in domain a ∈ A to a
component c in domain C such that there exits a component
b ∈ B for which the following equality holds a = b + c.

During training, we obtain two sets of unmatched sam-
ples: the set SA of mixed samples in domain A, and the set
SC of samples in the observed domain C.

Due to the lack of training samples in B, we rely on the
generation of a synthetic training set of samples in domainB:

S̄B := {a− g(a)|a ∈ SA} (1)

Fig. 1. The transformations and constraints of our method.
Blue arrows stand for functions. Dashed lines represent
losses, which are of two types: reconstruction losses (black)
and GAN loss terms (red).

The network mixes the samples in S̄B with random sam-
ples in C, in order to create the following set of synthetic
crosses:

S̄B × C := {b̄ + c|b̄ ∈ S̄B , c ∈ C} (2)

For each sample ā ∈ S̄B × C, we memorize the under-
lying samples b̄, c that were used to create it, and mark these
samples as b(ā) and c(ā), respectively.

In addition to g, we train two discriminator networks dC
and dA, which provide adversarial signals that enforce the dis-
tribution of the recovered samples from domain C to match
the distribution of the training set SC and the mixed synthetic
samples to match the distribution of domain SA. Specifically,
dC is applied to samples of the form g(a), where a ∈ SA;
dA is applied to samples of the form ā ∈ S̄B × C.

The following losses are used to train the network g:

LR1
=

∑
c∈SC

‖g(c)− c‖1 (3)

LR2
=

∑
a∈SA

‖g(g(a))− g(a)‖1 (4)

LR3 =
∑

ā∈S̄B×C

‖g(ā)− c(ā)‖1 (5)

LR4
=

∑
ā∈S̄B×C

‖(ā− g(ā))− b(ā)‖1 (6)

LGANC
=

∑
a∈SA

−`(dC(g(a)), 0) (7)

LGANA
=

∑
ā∈S̄B×C

−`(dA(ā), 0), (8)
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where ` is the Least Squares loss, following [18]. That is,
`(x, y) = (x − y)2. Note that g appears in LGANA

and ap-
pears more than once in LR3

,LR4
, since it takes part in the

formation of the set S̄B × C.
The first loss requires that g, applied to samples in C, is

the identity operator. The second loss enforces idempotence
on g (since g maps to domain C, applying it again should be
the same as applying identity), and the next two losses enforce
the separation of the synthetic cross samples to result in the
known components. The last two losses are GAN based losses
in the domains C and A. The full objective for g is defined as:

Lg = LR1
+ LR1

+ LR3
+ LR4

+ 0.5(LGANC
+ LGANA

)

The discriminators of the GAN losses, dC and dA, are
trained with the following losses, respectively:

LdC
=

∑
a∈SA

`(dC(g(a)), 0) +
∑
c∈SC

`(dC(c), 1) (9)

LdA
=

∑
ā∈S̄B×C

`(dA(ā), 0) +
∑

a∈SA

`(dA(a), 1) (10)

4. IMPLEMENTATION DETAILS

An Adam optimizer is used with β1 = 0.5, β2 = 0.999 and a
batch size of one. The learning rate is initially set to 0.0001
and is halved after 100, 000 iterations.

4.1. Network architecture

The underlying network architecture adapts that used in [19].
Let C7S1k denote a 7× 7 1-stride convolution with k filters.
Similarly, let C4S2k denote a 4× 4 2-stride convolution with
k filters. Let Rk denote a residual block with two 3 × 3 con-
volutional blocks and k filters and let uk denote a 2×nearest-
neighbor upsampling layer, followed by a 5×5 convolutional
block with k filters and 1 stride.

Recall that g(a) = a � m(a). m is built as an auto-
encoder. The encoder consists of two downsampling convolu-
tional layers, C7S164 and C4S2128. This is followed by four
residual blocks of type R256. Each convolutional layer of the
encoder is followed by an Instance Normalization layer and a
ReLU activation. The decoder consists of four residual blocks
of type R256. This is followed by two upsampling blocks,
u128 and u256, and a convolutional layer C7S13. Each con-
volutional layer of the decoder is followed by a Adaptive In-
stance Normalization [20] layer and a ReLU activation. To
obtain mask values between 0 and 1, the ReLU of the last
layer is replaced by a sigmoid activation function.

A multi-scale discriminator is used for dC and dA, as in
[21], to produce both accurate low-level details, as well as
capture global structure. Each discriminator consists of the
following sequence of layers: C4S264, C4S2128, C4S2256

andC4S2512. Each convolutional layer is followed by a leaky
ReLU with slope parameter of 0.2.

4.2. Audio processing

To convert an audio file to an input to network g, we perform
the following pre-processing: The audio file is re-sampled to
20480 Hz. It is then split into clips of duration of 0.825 sec-
onds. We then compute the Short Time Fourier Transform
(STFT) with window size of 40ms, hop size of 64 and FFT
size of 512, resulting in an STFT of size 257×256. Lastly, we
take the absolute values and apply a power-law compression
with p = 0.3, i.e. we obtain |A|0.3, where |A| is the mag-
nitude of the STFT. The highest frequency bin is trimmed,
resulting in an input audio representation of size 256× 256.

To convert the method’s output b̄ = a − g(a) back to
audio, we apply ISTFT on the multiplication of the magnitude
spectrogram of b̄ with the phase of the original mixture, and
add back the top-frequency by padding with zeros. To process
an entire audio file, we simply process each non overlapping
segment individually, and concatenate the results.

5. EVALUATION

We perform a comparison to other semi-supervised methods,
using the evaluation protocol used by [16]. In addition, we
compare our semi-supervised method to the state of the art su-
pervised methods, following the protocol used in [8]. Finally,
ablation experiments are run to study the relative importance
of the various losses.

5.1. Comparison to semi-supervised methods

For semi-supervised methods, our evaluation protocol fol-
lows closely the one of [16]. We evaluated our method
against the five methods reported there: (1) Semi-supervised
Non-negative Matrix Factorization (NMF) [15]: The method
learns a set of l = 3 bases from the samples in SC by
Sparse NMF [22, 23] as SC = Hc ∗ Wc, with mixture
components Hc and basis vectors Wc, where the two ma-
trices are non-negative, using the fast Non-negative Least
Squares solver of [24]. Then, the mixture SA is decom-
posed with 2l bases, where the first l bases are simply Wc:
SA = Hac ∗ Wc + Hab ∗ Wb. The estimated components
from domain B are then given by: S̄B = hab ∗Wb. (2) GAN:
A masking function m is learned so that after masking, the
training mixtures are indistinguishable from the source sam-
ples by a discriminator d, similar to our LGANC

loss. (3) GLO
Masking (GLOM): This method learns an explicit generative
GLO [25] model to both domain A and domain C and fits the
parameters to each given sample a, followed by approximat-
ing the solution by a mask between 0 and 1 that is multiplied
by the mixed signal a. (4) Neural Egg Separation (NES):
The iterative method of [16], which is initialized by taking
the mixture components to be each half of the mixed signal
a. (5) Fine-tuned NES (NES-FT): Initializing NES with the
GLOM solution above.
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The semi-supervised experiments are performed on the
MUSDB18 [26] dataset, which consists of 150 music tracks,
100 of which in the train set and 50 in the test set. Each mu-
sic track is comprised of separate signal streams of the mix-
ture, drums, bass, the accompaniment, and the vocals. In our
method, samples are preprocessed as described in Sec. 4.2
and then trained using the method of Sec. 3. We compare
the performance of our method, using the signal-to-distortion
ratio (SDR) in Tab. 1. We can observe that NMF, GAN,
GLOM and NES perform much worse then NES-FT and our
method. There is also a significant gap between NES-FT and
our method (2.1dB vs 3.2dB) as well.

5.2. Comparison to fully supervised methods

We next compare with fully supervised methods that solely
deal with singing voice separation. For this comparison, our
evaluation protocol follows closely the one of [8], except
that our method does not employ the training samples of the
singing voices and is unaware of the matching pairs (a, c).
Baseline results are shown for GRA3 [4], GRU-RIS-L [7] and
MaDTwinNet [8], which are discussed in Sec. 2, and for the
following methods: CHA [6], which uses CNN to estimate
time-frequency soft masks; STO2 [27], which is based on
signal representation that divides the complex spectrogram
into a grid of patches of arbitrary sizes; and JEO2 [3]:, which
is based on robust principal component analysis (RPCA). The
results for all of the above approaches are obtained from [8].

The development subset of of Demixing Secret Dataset
(DSD100) [28] and the non-bleeding/non-instrumental stems
of MedleydB [29] are used for training. Baseline approaches
here are trained in a supervised fashion, while our method is
trained in a semi-supervised manner. For evaluation, the eval-
uation subset of DSD100, which consists of 50 samples, is
used. For these methods, the literature reports both the signal-
to-distortion ratio (SDR) and the signal to-interference ratio
(SIR), and we report both, using the mir eval Python library.

The comparison is shown in Tab. 2. As can be seen,
SDR values for our method are better then those of GRA3
and CHA, but worse than STO2, JEO2, GRU-RIS-L and
MaDTwinNet. Our SIR value is significantly higher than
all baselines, achieving a gap of 7.0 to the second best
method. This is consistent with our observation: The net-
work seems to filter out all the instrumental music very well
for most samples. However, for some samples, there is a
slight distortion of the voice generated. Samples, in com-
parison to those published by [7], are available at https:
//sagiebenaim.github.io/Singing/.

5.3. Ablation study

We perform an ablation analysis to understand the relative
contribution of the different losses in our method. This is
done by removing various losses from the training objective
and retraining.

Table 1. Median SDR (dB) for our method and previous
semi-supervised approaches evaluated on the MUSDB18 [26]
dataset. Baselines are form [16], which did not report SIR.

Approach SDR SIR

NMF 0.0 -
GAN 0.3 -
GLOM 0.6 -

Approach SDR SIR

NES 0.3 -
NES-FT 2.1 -
Ours 3.2 14.2

Table 2. Median SDR and SIR (dB) values for the proposed
method and previous supervised approaches, which solely
deal with singing voice separation, evaluated on the evalua-
tion subset of DSD100 [28] dataset.

Approach Supervision SDR SIR

GRA3 [4] supervised -1.7 1.3
CHA [6] supervised 1.6 5.2
STO2 [27] supervised 3.9 6.7
JEO2 [3] supervised 4.1 6.1
GRU-RIS-L [7] supervised 4.2 7.9
MaDTwinNet [8] supervised 4.6 8.2

Ours semi-supervised 3.5 15.2

Table 3. Ablation study: Median SDR and SIR values for the
proposed method without (w/o) selected losses evaluated on
the evaluation subset of DSD100 [28].

Losses SDR SIR

All losses 3.5 15.2
w/o LR1

-0.9 3.4
w/o LR2

2.3 9.7
w/o LR3 -4.3 13.3

Losses SDR SIR

w/o LR4
-6.3 -4.7

w/o LGANA
-6.3 -4.2

w/o LGANC
-4.1 -2.4

w/o LGANA
&LGANC

-17.0 -3.6

As can be seen in Tab. 3, LR2 has a smaller significance
than other losses. The most significant losses are LR4

, and
the GAN losses LGANC

and LGANA
, without even one of

these, the two metrics drop considerably. LR3
is also very

significant and without it the SDR is greatly diminished.

6. CONCLUSIONS

We present a new method for semi-supervised singing voice
separation that is competitive with some of the state of the art
supervised methods and all of the literature semi-supervised
ones. The crux of the method is the use of compound losses,
applied to synthetic mixes, and the application of two GANs.
This setup could be extended to multiple sources due the su-
perposition principle of audio signals that is satisfied by the
compound losses and will be inspected as future work. In
addition, using time-domain architectures can be explored.
The method is applied sequentially to fixed-length audio clips
and, as future work, we would like to employ overlapping
segments and even incorporate longer-term dependencies.
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