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ABSTRACT

We proposed a deep neural network (DNN) based approach
to synthesize the magnitude of personalized head-related
transfer functions (HRTFs) using anthropometric features of
the user. To mitigate the over-fitting problem when train-
ing dataset is not very large, we built an autoencoder for
dimensional reduction and establishing a crucial feature set
to represent the raw HRTFs. Then we combined the decoder
part of the autoencoder with a smaller DNN to synthesize the
magnitude HRTFs. In this way, the complexity of the neural
networks was greatly reduced to prevent unstable results with
large variance due to overfitting. The proposed approach was
compared with a baseline DNN model with no autoencoder.
The log-spectral distortion (LSD) metric was used to evaluate
the performance. Experiment results show that the proposed
approach can reduce LSD of estimated HRTFs with greater
stability.

Index Terms— HRTFs, Anthropometry, Autoencoder,
DNN, Spatial audio

1. INTRODUCTION

Head-related transfer functions (HRTFs) are embedded with
binaural cues such as interaural time difference (ITD), inter-
aural level difference (ILD) and spectral modifications caused
by pinna, head, and torso. These cues are used by human to
localize sound sources. The HRTF is defined as the transfer
function of the spatial filter from the sound source to the en-
trance of the ear canal in the frequency domain. Hence, a vir-
tual audio signal from an arbitrary location can be produced
by filtering a non-spatial audio signal using the corresponding
HRTF. However, HRTFs are very sensitive to anthropomet-
ric features, that is, they are different from person to person
such that using other peoples HRTFs would cause direction
confusion. Hence, HRTFs need to be personalized, however,
directly measuring HRTFs is time-consuming and expensive.

Several methods have been proposed for customizing
HRTFs. For instance, the transmitted audio signal can be
divided into several blocks, each of which has its own mathe-
matical model with personalized parameters [1,2]. In addition
to the model-based methods, methods of selecting approxi-
mate HRTFs from a HRTF database for an individual were

also proposed in [3,4]. Later on, based on the assumption that
HRTFs and anthropometric features share a very similar re-
lation, personalized HRTFs of a new subject were derived by
applying his weights in the space of the sparse representation
of anthropometric features to stored HRTF templates [5–7].
Besides, statistical analysis, regression analysis, and support
vector regression analysis were carried out to find princi-
pal anthropometric features in customizing HRTFs [8–10].
Gradually, the concept of neural network was also introduced
into this research area. For example, dimensional reduction
methods, such as principal component analysis (PCA) and
isometric feature mapping (Isomap), were combined with
neutral networks to synthesize HRTFs [11–16]. Not surpris-
ing, directly using a deep neural network (DNN) to estimate
personalized head-related impulse responses (HRIRs) from
the anthropometric features was proposed recently in [17].

However, DNNs require lots of data for training or they
would suffer from the over-fitting problem to produce poor
estimation for unseen condition. Although some public HRTF
datasets are available, their sizes are not large due to the time-
consuming measuring. Besides, there is no unified feature set
for measuring HRTFs such that different datasets record dif-
ferent anthropometric features. Therefore, directly combin-
ing different datasets into a large dataset for DNN training
is not feasible. To solve this problem, we propose an au-
toencoder to encode HRTFs from different datasets. By in-
creasing the number of samples of HRTFs, the autoencoder
becomes more general and provide good description of the
HRTF space. Then, a DNN is used to map the measured
anthropometric features to the more general bottleneck fea-
tures of the autoencoder to decode personalized HRTFs. To
evaluate our idea, we compared performance of the proposed
method to performance of a baseline DNN system built by
following the architecture and parameters in [17]. Note, for
the purpose of comparison, the baseline DNN system was
built to estimate HRTFs rather than HRIRs.

The rest of this paper is organized as follows. In Section
2, we will describe pre-processing of the data and the mecha-
nism of the proposed method which combines an autoencoder
and a DNN. In Section 3, the experiment results of compared
systems are given and discussed. Finally, the conclusion and
potential future work are given in Section 4.
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(a) Interaural coordinate system (b) Vertical coordinate system

Fig. 1. Different coordinate system for allocation of HRTFs
measuring points

2. PROPOSED METHOD

We have done some pilot experiments in estimating person-
alized HRTFs directly using a DNN. However, the estimation
error of such a model has a large variance potentially caused
by the over-fitting of the DNN model. To mitigate the over-
fitting, the training dataset needs to be enlarged and the num-
ber of involved estimation parameters needs to be reduced.
For these two purposes, we adopted an autoencoder to en-
code/decode an enlarged HRTF space, which was established
by adding more HRTF samples from different datasets, using
less number of features (i.e., the bottleneck features of the au-
toencoder). The proposed method and the pre-processing on
the data is described in more details in this section.

2.1. The CIPIC database and pre-processing

The public CIPIC database [18], which is the most popu-
lar database in the research field of estimating personalized
HRTFs, was used as the primary database in our method. This
database contains three sets of data, including ITD, HRIRs,
and corresponding anthropometry measurements. Since we
focused on estimating magnitude responses of HRTFs, the
ITD data was not used in our experiments.

2.1.1. Definition of the coordinate system

The CIPIC database adopts the interaural coordinate system
rather than the vertical coordinate system, which is the most
used coordinate system when measuring HRIRs in past stud-
ies. Both coordinate systems are shown in Fig. 1. The ele-
vation angle of the interaural coordinate system is defined in
the range of −90◦ ≤ φ′ < 270◦ and the azimuth angle is
in the range of −90◦ ≤ θ′ < 90◦ as shown in Fig. 1(a). For
our approaches, the azimuth angle was re-defined. The defini-
tion of the negative azimuth angle was changed from the left
side of the listener to the ipsilateral side of the receiving ear.
In contrast, the definition of the positive azimuth angle was
changed from the right side of the listener to the contralateral

side of the receiving ear. The advantage of this new definition
is explained in section 2.2.1.

2.1.2. Deriving HRTFs from HRIRs

To derive magnitude responses of HRTFs, we first applied
512-point FFT on the raw HRIRs in CIPIC database, then
smoothed the magnitude spectra using a constant-Q filterbank
(Q=8), and finally took the logarithm to produce magnitude
HRTFs in dB. For our usage, we retained magnitude HRTFs
between 200 Hz and 15 kHz based on the study in [11]. After
these processes, each magnitude HRTF was represented by a
vector of the length of 173. Since we adopted the sigmoid
function as the activation function of the output layer, the log.
magnitude of the HRTF was normalized to values between
0 and 1. Without loss of generality, the performance com-
parison and discussion in this paper are based on experiment
results of the left ear on all azimuth angles at the 0◦ elevation
angle.

2.1.3. Anthropometric features

The CIPIC database contains 37 anthropometry measures, in-
cluding 17 measures related to the torso and the head and
10 measures related to each pinna. The definition of these
measurements can be accessed in [18]. Since we were esti-
mating magnitude HRTFs of the left ear, we didn’t use the
right-pinna-related 10 measures. Hence the input anthropo-
metric feature of our DNN model is a 27-dimensional vector.
Each input feature vector was then normalized by following
procedures in [17] as

x′i =
(
1 + e

− (xi−µi)
σi

)−1
(1)

where xi is the i− th feature and µi and σi are the mean and
standard deviation of the i− th feature, respectively. Finally,
the {x′i, i = 1, 2...27} were used as the input features to the
DNN model.

2.2. Architecture of proposed models

The proposed autoencoder and DNN models are shown in
Fig. 2. The training processes are indicated by the bold and
solid arrows. First, we trained the autoencoder for HRTFs.
Then, the bottleneck vector, the encoder of HRTFs, were used
as the target when training the DNN model with anthropomet-
ric features as input. On the other hand, the dash arrows indi-
cate the test processes, where we generate personalized mag-
nitude HRTFs with anthropometric features of a new subject.
During the test phase, the DNN model first produced the bot-
tleneck vector based on anthropometric features of the new
subject. Then, the decoder part of the autoencoder decoded
the estimated bottleneck vector to produce the estimated mag-
nitude HRTFs. Details of the training and parameters used in
each model are described below.
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Fig. 2. The architecture of the proposed autoencoder and
DNN models and training/test procedures.

2.2.1. Autoencoder settings

In the proposed method, one autoencoder was trained for each
elevation angle. As shown in Fig. 2, the azimuth angle was
appended to the bottleneck vector as the label of the vector,
with its sign defined in Section 2.1.1. Originally, each HRTF
requires two parameters, left or right ear and the azimuth an-
gle, to describe the horizontal relative position of the sound
source to the receiving ear. After changing the definition of
the sign of the azimuth angle as in Section 2.1.1., only the az-
imuth angle parameter is needed to describe the relative posi-
tion of the sound source. In addition, the left ear and the right
ear now share a single autoencoder, which doubles the train-
ing data for each autoencoder. The rationale of our approach
is that HRTFs of the two ears are highly symmetric.

Each autoencoder has five hidden layers, including the la-
tent layer (bottleneck layer). We adopted the ReLU function
as the activation function for all hidden layers, and the sig-
moid function for the output layer. According to [19], we
set the width of latent layer to 20 for encoding HRTFs while
not losing too much information between different subjects.
The width of all other hidden layers was set to 150 for the
least reconstruction error. The mean-squared-error (MSE)
was adopted as the cost function and the adaptive moment
estimation (ADAM) technique with the learning rate of 0.001
was used for optimization during training. Besides, we set the
dropout rate to 0.95 due to the condition of over-fitting.

2.2.2. DNN settings

Similar to the method in [17], one DNN model was trained for
predicting bottleneck features for one azimuth angle. In other

Table 1. Mapping between the azimuth angle in the vertical
coordinate system (θ) and the azimuth angle in the interaural
coordinate system (θ′).

Sound source on Sound source on

the left side the right side

(0◦ to 90◦) (270◦ to 360◦)

Left ear θ′ = −θ θ′ = 360− θ
right ear θ′ = θ θ′ = θ − 360

words, in our experiments, we trained one autoencoder for a
particular elevation angle and 25 DNN models for 25 azimuth
angles at the same elevation. Since HRTFs were encoded by
the bottleneck features, the dimension of the output layer of
the DNN model was much reduced comparing with the base-
line system in [17]. Each DNN contained three hidden layers
with width of 40 units. The ReLU function was used as the
activation function in all hidden layers and the output layer.
Same as in the autoencoder, the MSE was chosen as the cost
function and ADAM technique with the learning rate of 0.001
was used for optimization. Dropout rate was set to 0.95 as
well.

2.3. Further improvement

2.3.1. Joint training

In our original approach, we trained an autoencoder for di-
mensionality reduction of the HRTFs at a particular eleva-
tion angle. One DNN was trained separately for each az-
imuth angle. Although this approach has already shown im-
provement over the DNN-only baseline system, further ac-
tions were taken for potential improvement. The first action
was fine-tuning weights of the system by joint training. In
other words, after the DNN was separately trained, we con-
nected it with the decoder part of the trained autoencoder to
fine-tune the weights. However, this means HRTFs of differ-
ent azimuth angles do not share the same decoder, but having
similar decoders, and our system becomes more complex.

2.3.2. Combining HRTF dataset

To increase training data, we added HRTFs of the LISTEN
database [20] and the SADIE database [21] in our experi-
ments. Since these two databases use the vertical coordi-
nate system for measuring HRTFs, the mapping of the an-
gles between two coordinate systems is needed. Considering
our new definition in Section 2.1.1, the mapping rules of az-
imuth angles between two coordinate systems at 0◦ elevation
angle are shown in Table 1. For other angles, more compli-
cated mapping rules between two coordinate systems need to
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be further derived for both the elevation and the azimuth an-
gles.

3. EXPERIMENT RESULTS

In HRTF related studies, LSD is usually used to evaluate the
performance of the proposed method. It is formulated as fol-
lows

LSD(H, Ĥ) =

√√√√ 1

k2 − k1 + 1

k2∑
k=k1

(
20 log10

∣∣∣∣∣H(k)

Ĥ(k)

∣∣∣∣∣
)2

(2)
where k is the index of frequency bin; H and Ĥ are the actual
and the predicted HRTFs.
Four different approaches, named Baseline, AutoEn+DNN,
Joint-Training, and Dataset-Combined, were evaluated. The
Baseline system is a pure DNN model we built by following
the architecture and parameters in [17]. The AutoEn+DNN is
our original approach, where the autoencoder and DNNs are
trained separately. The Joint-Training approach fine-tunes the
weights of each DNN and the decoder by further joint train-
ing as mentioned in Section 2.3.1. The Dataset-Combined
approach further combines HRTFs in other databases for
training the autoencoder. In this study, we only used HRTFs
from 35 subjects, who have complete anthropometry mea-
surements, in the CIPIC database for evaluation. In addition,
we only considered the plane of 0◦ elevation angle where
the simple mapping rules in Table 1 can be applied. In other
words, for each approach, we estimated 25 magnitude re-
sponses of HRTFs at all azimuth angles at the 0◦ elevation
(φ′ = 0◦) and computed the LSD. Leave-one-out cross val-
idation was adopted, so we had 25×35 LSD values for each
compared approach.

Fig. 3 shows mean and variance of LSD of four com-
pared approaches at the azimuth angle of -65, -30, 0, 30, and
65 degrees. In Table 2, we show the means of 25×35 LSD
of each compared approach. From these results, we can ob-
serve that both mean and variance at most azimuth angles can
be reduced by incorporating an autoencoder for dimensional
reduction. Furthermore, joint training the DNN and the de-
coder part of the autoencoder to fine-tune the weights can fur-
ther improve the performance slightly. However, the benefit
of adding more HRTF data is not clearly shown yet.

4. CONCLUSION AND FUTURE WORK

Although several public HRTF databases are available, none
of them is large enough for training DNNs. Therefore, we
propose an autoencoder for HRTFs for dimensional reduction
to lighten the over-fitting problem by reducing the complex-
ity of the DNN. The data set for training the autoencoder can
be doubled by utilizing the quasi-symmetric characteristic of
HRTFs. Experiment results show that the proposed approach
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Fig. 3. Mean and variance of LSD of compared approaches
at different azimuth angles.

Table 2. Mean LSD of compared approaches over all azimuth
angles

Training AutoEn Joint Dataset

Scheme Baseline +DNN Training Comb.

mean

LSD 3.705 3.429 3.252 3.246

can reduce both the mean and variance of LSD of different
azimuth angle. In other words, the proposed approach can
estimate HRTFs more accurately and more stably. The other
direct way to mitigate the over-fitting problem is to add more
training data. However, measuring HRTFs is very expen-
sive and time consuming. The idea of using autoencoder to
combine different HRTF databases to build a universal HRTF
codebook is carried out in this study. No benefit is shown yet
from the experiment results. One possible reason is the com-
bined dataset is still too small to show any benefit. The other
reason is that different measuring environments of different
HRTF database, including different measuring distance and
different setups of the measuring chamber, etc., might intro-
duce more variance into the combined dataset. Further stud-
ies in effectively combining different HRTF databases will be
carried out in the future.
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