
HEAD RELATED IMPULSE RESPONSE INTERPOLATION AND EXTRAPOLATION USING
DEEP BELIEF NETWORKS

Grady Kestler1, Shahrokh Yadegari2, and David Nahamoo3

Qualcomm Institute at UC San Diego1,2, Pryon3

Department of Electrical Engineering1, Department of Music2

{gkestler1, sdy2}@ucsd.edu, dnahamoo@pryoninc.com3

ABSTRACT

This paper presents a machine learning Deep Belief Network
technique for interpolation and extrapolation of HRTF (Head
Related Transfer Function) databases. In this technique, we
decouple the stereo pair of HRTFs for each ear. Furthermore,
we remove the inter-aural time differences (ITD) and distance
attenuation from the recorded HRTF measurements such that
the DBNs only interpolate and extrapolate the spectrum filter-
ing of the audio for the two ears. Testing on the CIPIC and
SCUT databases produces results of an average log spectral
distortion less than 3 dB for all points around the head.

Index Terms— HRTF Interpolation, Deep Belief Net-
works, Binaural Audio

1. INTRODUCTION

One of the most common forms of synthesizing spatial au-
dio on headphones is to use Head Related Transfer Func-
tions (HRTF), usually measured around the head of a subject.
These are stored as a stereo pair (left and right ear) of time do-
main FIR filters known as a Head Related Impulse Responses
(HRIRs). Selecting a left and right HRIR pair at a specific
location, we can synthesize binaural audio with the impres-
sion that the sound is emanating from the chosen location. In
order to recreate a spatial audio impression at any arbitrary
location, we can only expect to interpolate or extrapolate the
necessary HRIR pair from an existing set of measured HRIRs
at regularly spaced discrete locations.

An individual HRIR encodes spectrum filtering due to an-
thropometry of a subject as well as travel time and distance
attenuation dependent on the distance from the source to the
corresponding ear. A pair of HRIRs represents relative in-
formation as ITD - the inter-aural time differences and ILD
- inter-aural level differences. All of these are related to the
desired perceived location of the sound. The interpolation
technique proposed in this paper is designed to work in con-
junction with a ray-tracing algorithm for audio spatialization
called Space3d [1, 2, 3]. This algorithm calculates the ITD
and distance attenuation for each ear separately and uses the
HRTFs only for the spectrum filtering of the audio. Thus,

we first remove the ITD and distance attenuation from the
recorded HRTFs and train our neural network to learn the re-
sulting filters for each desired location. Then the predicted
results can be used as binaural filters for spatial synthesis us-
ing Space3d.

In section 2, we discuss the preprocessing techniques used
to prepare the HRTF data for the network. Section 3 describes
the training methods and architecture of our Deep Belief Net-
work [4]. Lastly, sections 4 and 5 discuss our results in terms
of the log spectral distortion of predicted HRTFs and possible
avenues to pursue in the future.

2. DATA

The two datasets used in these experiments were the CIPIC
database [5] and the publicly available SCUT database [6].
The CIPIC database consists of 35 subjects with anthropomet-
ric data and 1250× 128 HRIRs measured at various positions
around the head at 1.0 meter distance from the subject. The
SCUT database consists of a single subject, with 10 spheres
of 493 × 256 HRIRs meaured at varying distances from .2
to 1.0 meters. We used the SCUT database to test the net-
works ability to extrapolate over the distance parameter. The
preprocessing steps were applied equally to both databases.

2.1. Magnitude Response

From [7], it is possible to reconstruct the minimum phase re-
sponse of the HRTF based solely on the magnitude response.
We chose to learn only the magnitude of the HRTFs to avoid
dealing with discontinuities which are introduced by unwrap-
ping the phase, especially at the higher end of the spectrum as
we get close to Nyquist.

It is best to do the measurement of the HRIRs in ane-
choic conditions; however, that is not usually possible and
HRIRs can contain reflections from the physical environment
in which the measurement is done. The presence of these
reflections in the HRIRs will not only make the synthesis re-
sults less accurate, but will also complicate the learning pro-
cess for the network as the two physical effects (the effect
of the head, and the effect of reflections) will be combined.
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Based on our subjective listening tests, we found that the first
64 samples of the HRIRs, after accounting for the travel time
from the speaker to the ear, contained the majority of the in-
formation needed for creating spatial impressions. Truncat-
ing the HRIRs to 64 samples before taking a 64 point FFT
allowed us to remove many of the reflections. Since real data
has a symmetric fourier domain representation, we used the
32 positive frequency bins and converted the results to deci-
bels; 20 log10 |HRTF |.

In order to account for the travel time of the sound, we
traced the sound ray along its shortest path from the speaker to
the ear. Modelling the head as a sphere, we assume that once
the audio reaches the head, it travels along its surface. Using
this distance, the speed of sound, and the sampling rate, we
were able to remove an appropriate number of samples from
the beginning of each HRIR. A result of this technique is the
removal of ITD from HRIR pairs. The time delay, and thus
ITD, is re-introduced during the Space3d synthesis in order to
maintain accurate spatial impressions.

Additionally, sound pressure level is attenuated by a fac-
tor of 1

d where d is the distance from the ear to the sound
source. Thus, we perform an inverse scaling by d during pre-
processing. Like ITD, the effect of the distance attenuation
is later introduced back in the synthesis process based on the
location of the virtual audio source being synthesized.

2.2. Position and Anthropometric

Each of the 1250 positions in the CIPIC HRTF database is a
3 × 1 spherical coordinate vector. However, this introduced
a number of discontinuities at 0◦ and 360◦ in the azimuthal
direction leading us to use cartesian coordinates instead.
The anthropometric data for a single subject from CIPIC is
provided as a 17 × 1 dimensional vector of head and torso
measurements and a 10 × 2 dimensional vector of ear mea-
surements; both left and right ears. When using the SCUT
database and testing the extrapolation capability of the sys-
tem, the network was not provided with any anthropometric
data.

3. NETWORK

3.1. Data management

The input to our network consists of a single 3 × 1 Carte-
sian coordinate vector, the 17 × 1 head and torso measure-
ments, and the 10 × 2 left and right ear measurements from
[5]. The output of the network is a 32 × 1 log magnitude re-
sponse. When training the network, we remove 10% of the
data as test data and 20% of the remaining data for validation.
Because the structure of our network is divided into multi-
ple sub-networks, different components of the input data are
used at different levels. For example, since the left ear mea-
surements should not contribute to the HRTF of the right ear
but the head measurements effect both, some sub-networks

have layers to which the input was position and head mea-
surements only, later splitting into two separate paths which
took ear measurements as auxiliary input before outputting ei-
ther the left or the right ear’s HRTF. The HRTFs data from the
CIPIC database consists of 1250×32 dimensional data which
we preprocessed following the description above. Each of the
1250 rows corresponds to a different position. The same re-
moval of 10% and 20% for testing and validation were ap-
plied.

Because 1250 × 32 dimensional training data is not nec-
essarily large for deep neural network training, we introduce
a mixing scheme between the testing and validation data to
increase performance but avoid over-training. For a single it-
eration, i, the training and validation data are set for a number
of epochs, ne. Once the network is trained for ne epochs, on
the next iteration, i + 1, a new 20% of the data is removed
for validation. The network continued to train like this for a
set number of iterations. After experimenting with the bal-
ance of epochs and iterations, we found that after training for
ne = 20 epochs and ni = 20 iterations for a total of 400
cycles, the network performed well, but was not over trained.

3.2. Architecture

The network architecture shown in Figure 1, applies only to
the left ear. However, the right ear network is identical and in
fact, most of the sub-networks are shared, outputting predic-
tions for both the left and right ears. That being said, for the
MagLM̄,σM network, an equivalent MagRM̄,σM was devel-
oped for the right ear with identical architecture.

Within the full architecture, we introduce a number of
sub-networks utilizing the physics of HRTFs to accommodate
the small amount of data we have. The three types of sub-
networks we designed were TypeA networks in red, TypeB
networks in blue, and a TypeC network in green. The TypeA
networks (Magn, Realn, Imagn), take as input a 20×1 vec-
tor for the position and head information and later a 10 × 2
vector of the ear measurements for the left and right ears. The
subscript, n, denotes the cost function produces a zero mean,
unit variance prediction of the HRTF (see Section 3.3). The
TypeB networks, RealR̄,σR and ImagĪ,σI , predict the mean
value and standard deviation of the real or imaginary part of
the HRTF (R̄, σR or Ī , σI ). These predicted values are used to
un-normalize the prediction from Realn and Imagn in order
to generate the magnitude using real and imaginary values,
MagRI . From here, the normalized predictions of Magn
and MagRIn, along with the position, head, and ear mea-
surements, are passed to a mixing network, Mag2n, part of
which is structured identically to Magn and initialized to the
same weights as Magn.

At this point, we have three separate, normalized predic-
tions of the HRTF magnitude;Magn,MagRIn, andMag2n.
In order to un-normalize them, we generate two separated left
and right networks, MagL and MagR, whose purpose is to

267



predict the mean and standard deviation of the un-normalized
magnitude response (M̄, σM ). The un-normalized Mag,
MagRI , and Mag2, are passed to a 96 × 32 mixing matrix,
W , initialized to

W =


1
3 , 0, . . . , 1

3 , 0, . . . , 1
3 , 0, . . .

0, 1
3 , . . . , 0, 1

3 , . . . , 0, 1
3 , . . .

...,
...,

. . . ,
...,

...,
. . . ,

...,
...,

. . .


producing an average of the three networks. This averaged
result is then passed to MagFinal whose layers are initial-
ized to an identity matrix based on the presumption that the
average of Mag, MagRI , and Mag2 would be close to the
true output.

Magn Realn Imagn

RealR̄,σR
ImagĪ,σI

Î = În ∗ σ̂I + ˆ̄IR̂ = R̂n ∗ σ̂R + ˆ̄R

ˆMagRI = 20 log10 (

√
R̂2 + Î2)

ˆMagRIn =
ˆMagRI− ¯̂

MagRI
σ ˆMagRI

Mag2n
MagLM̄,σM

ˆMag = ˆMagn ∗ σ̂M + ˆ̄M

ˆMagRI = ˆMagRIn ∗ σ̂M + ˆ̄M

ˆMag2 = ˆMag2n ∗ σ̂M + ˆ̄M

W

MagFinal

Fig. 1. TypeA and TypeC networks predict zero mean, unit
variance normalized functions. TypeB networks predict the
mean and standard deviation of the raw value to be used for
un-normalization of the TypeA and TypeC predictions later.
The white blocks indicate mathematical operations that were
not trained in the network. The mixing matrix W and the
MagFinal network produce the final magnitude output.

3.3. Objective Functions

Using standard notation, let the prediction from the network
be denoted ŷ and the true data be y. For TypeA and TypeC
networks, the objective function is given by

mse(ynorm, ŷnorm) =

31∑
i=0

(ynorm[i]− ŷnorm[i])2

where

ynorm =
y − ȳ
σy

ŷnorm =
ŷ − ¯̂y

σŷ

and (ȳ, σy) denote the sample mean and standard deviation.
TypeB networks usedmse(ȳ, ˆ̄y) andmse(σy, σ̂y) and the

training of MagFinal used a cost function given by

mse(y, ŷ) +mse(ȳ, ¯̂y) +mse(σy, σŷ)

4. RESULTS

The log spectral distortion (LSD) is a common metric used
to compare generated HRTFs to true HRTFs [8, 9, 10], and
the errors in HRTFs with spectral distortion around 4 dB are
often imperceivable in listening tests [11, 12, 13]. Because
our network predicts log data, the mse(y, ŷ) is the same as
LSD(y, ŷ) up to a scaling factor. Let x = 20 log10 y be the
output of the network, then

mse(x, x̂) =

N−1∑
i=0

(20 log10 y[i]− 20 log10 ŷ[i])2

=

N−1∑
i=0

(20 log10

y[i]

ŷ[i]
)2

LSD(y, ŷ) =

√√√√ 1

N

N−1∑
i=0

(20 log10

y[i]

ŷ[i]
)2

where N = 32 is the number of FFT bins used.
Our results are presented in three separate experiments

comparing the LSD at various positions of the data. The first
experiment predicts HRTFs at 0◦ elevation around the head.
The second compares HRTFs at all locations around the head,
and the third attempts to extrapolate HRTFs at different dis-
tances. The results of the first two experiments are presented
using the CIPIC database subject 003, with similar results
for alternative subjects. Due to the limited radial distances
in the CIPIC database, the third experiment was performed
on data from the SCUT database which has measurements at
distances of 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2
meters. For experiments 1 and 2, the network was trained on
800 of the 1250 data points, validated on 225 data points, and
tested on 125 data points. The plots shown consider all 1250
data points. Specific results for the test data are mentioned in
the text.

Figure 2 illustrates our results at 0◦ elevation around the
head from the left ear to the right ear in front of the head
followed from the right ear to the left ear in the back of the
head. We show the LSD below 11 kHz to illustrate the net-
works ability to predict within a more meaningful audible
range. The erratic peaks that appear in the full bandwidth
plot, but not in the narrow bandwidth plot (< 11 kHz), can be
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Fig. 2. The plots correspond to the 0◦ elevation ring tranvers-
ing from the left ear in front of the head from 80◦ to −80◦

where 0◦ corresponds to directly in front of the head. The
second set of azimuthal angles happens from traversing from
the right ear to the left ear behind the head (180◦) elevation).
Blue solid line indicates LSD over the full spectrum. Green
dotted line indicates LSD up to 11 kHz. (a) Left ear (b) Right
ear

attributed to errors in the high frequency components often at,
or around, the nyquist frequency. Of the points plotted, posi-
tions at 0◦ and−80◦ were removed as two of the 125 test data
points that the network had never seen. Still, the network is
able to interpolate these locations relative to the surrounding
locations with comparable LSD.
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Fig. 3. (a) Left ear. (b) Right ear. LSD for
(a, right), (b, right) full bandwidth and (a, left), (b, left)
up to 11 kHz.

Figure 3 expands the results of 0◦ elevation to all eleva-
tions for the left and right ear. It is clear that our network
predicts best at positions above our head, but does compara-
bly well at all positions, not only at the 0◦ elevation. The
average LSD for all 1250 data points for the left ear over all
positions for both the full bandwidth and half bandwidth LSD
are 2.48, 1.73 dB respectively and 2.35, 1.73 dB for the right
ear. On the 125 points the network was not trained with, these
numbers were 2.76, 1.96 dB (left) and 2.42, 1.77 dB (right).

The extrapolation experiment was performed on the
SCUT database by training the network on all data points
between 0.9 and 0.25 meters in the hopes of extrapolating the

HRTFs at 1.0 meters and 0.2 meters for all positions around
the head. Figure 4 shows the LSD for each distance. From
these results, it is clear that the network is able to extrapolate
HRTFs at the closer position, but has difficulty extrapolating
at further distances. As we move farther from the micro-
phones, reflections from the torso can be more easily mixed
with reflections from nearby surfaces [14]. Additionally, the
signal-to-noise ratio at further distances for recording audio
is decreased which increases the error from the predictions to
the actual HRTFs.
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Fig. 4. (a) Left ear. (b) Right ear. LSD for
(top) full bandwidth and (bottom) up to 11 kHz.
The average LSD for each radial position are
(a, top) 4.81, 2.58, 2.27, 1.94, 2.31, 2.39, 1.68, 1.75, 1.82, 2.26
(a, bot) 3.71, 2.21, 1.88, 1.62, 2.12, 2.19, 1.50, 1.56, 1.58, 1.78
(b, top) 5.01, 2.66, 2.52, 2.24, 2.59, 2.56, 1.88, 1.86, 1.92, 2.41
(b, bot) 4.07, 2.26, 2.08, 1.82, 2.36, 2.39, 1.63, 1.69, 1.74, 2.08

5. CONCLUSION

In this paper, we presented a neural network based tech-
nique for interpolation and extrapolation of HRTF databases.
We presented results on two different databases; CIPIC and
SCUT. We demonstrated that these neural networks can in-
terpolate the HRTF at all locations around the head with an
average spectral distortion less the 3 dB. In addition, the tech-
nique can also extrapolate near-field HRTFs with low spectral
distortion. The introduced methodology holds promise for
predicting individualized HRTFs, i.e. for any anthropomet-
ric data, when a larger dataset with more subjects becomes
available.
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