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ABSTRACT
A powerful and flexible approach to record or encode a spatial sound
scene is through spherical harmonics (SHs), or Ambisonics. An SH-
encoded scene can be rendered binaurally by applying SH-encoded
head-related transfer functions (HRTFs). Limitations of the recording
equipment or computational constraints dictate the spatial reproduc-
tion accuracy, thus rendering might suffer from spatial degradation
as well as coloration. This paper studies the effect of tapering the
SH representation of a binaurally rendered sound field in conjunction
with its spectral equalization. The proposed approach is shown to
reduce coloration and thus improves perceived audio quality.

1. INTRODUCTION

Spherical harmonics (SH) allow describing any spherical sound scene
in a representation that is independent of the reproduction system.
Unlike object-based audio encoding methods, the SH or Ambisonics-
based representation of a sound field does not require a description of
the scene in terms of individual sound sources and their locations and
is therefore well suited for encoding and transmitting spatial audio
recordings of complex acoustic scenes. A comprehensive overview
of strategies for decoding an Ambisonics stream at the receiver is
found in [1]. One common way of experiencing Ambisonics audio is
binaurally over headphones, either by way of simulating an array of
virtual speakers or by decoding directly to binaural output signals via
SH-encoded head-related transfer functions (HRTFs) [2, 3, 4].

One major advantage of encoding virtual sound scenes in Am-
bisonics compared to object-based methods is that the rendering cost
does not scale with the number of individual sound sources but instead
with the SH encoding order, a parameter that can be chosen freely.
This allows to trade off computational cost and bandwidth require-
ments with the desired spatial resolution, e. g. by determining the
required encoding order via an adaptive perceptual measure [5]. Fur-
thermore, there are flexible parametric coding approaches specifically
designed for efficient binaural enhancement [6, 7].

Decreasing the SH encoding order essentially limits the available
bandwidth in the spatial domain, which may result in spatial aliasing
and coloration artifacts that negatively affect audio quality [8].

For time-frequency domain signals, applying tapering windows
has been widely established. The concepts constitute a way of ad-
dressing sidelobes in spatial filtering [9] and Poletti describes some
effects of windowing in the SH domain of audio signals [10]. Taper-
ing in the SH domain finds application in the sound field synthesis
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community and is used in Ambisonics loudspeaker decoding [11] or
when synthesizing focused virtual sound sources [12, 5.6.2].

Ben-Hur et al. showed that decoding SH-encoded audio of lim-
ited SH order to binaural signals results in a high-frequency roll-off,
mainly due to the order truncation of the head-related transfer func-
tions (HRTFs) [13]. To reduce the resulting coloration of the audio
signal, the authors propose to equalize spectral distortions by apply-
ing an order-dependent compensation filter to the binaural signals.
However, while the spectral equalization seems to reduce overall per-
ceived coloration, spatial aliasing due to the truncated HRTFs causes
clearly audible angle-dependent artifacts.

Here we analyze the effects of applying a tapering window di-
rectly in the SH domain when decoding Ambisonics audio to binaural
signals. We show that tapering successfully reduces angle-dependent
coloration and expand the order-dependent compensation filter model
proposed by Ben-Hur et al. to include a tapering window function.

2. BINAURAL AMBISONICS DECODING

2.1. Ambisonics Representation

Observing a sound field on the unit sphere, the spherical harmonics
transform (SHT) allows a compact representation in the spherical
harmonics (SH) domain. A point Ω on the unit sphere is given in
azimuth ϕ and colatitude θ. The SHT is also referred to as a spherical
Fourier transform, based on the spherical harmonics [14, 1.4], and is
defined for any sound field s(ϕ, θ) = s(Ω) as

σnm =

∫
Ω

s(Ω)[Y m
n (Ω)]∗dΩ , (1)

with the spherical harmonics Y m
n (ϕ, θ) = Y m

n (Ω). These form an
orthogonal and complete set of spherical basis functions [15] and
the SH coefficients σnm can be interpreted as the angular spectrum /
space-frequency spectrum on the sphere.

The inverse spherical harmonics transform is given as the Fourier
series

s(Ω) =

N∑
n=0

+n∑
m=−n

σnmY
m
n (Ω) , (2)

where N is referred to as the representation order, yielding to
(N + 1)2 Ambisonics channels. A perfect reconstruction is achieved
for N =∞.

The real spherical harmonics basis functions Yn,m for order n
and degree m are given as in [4]:

Yn,m(θ, ϕ) =

√
(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!Pn,|m|(cos θ)ym(ϕ), (3)
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Fig. 1. Cross section (θ = 90◦) of a spatial dirac pulse magnitude in
dB, at Ω = [90◦, 90◦], reconstructed from its SH representation by
(2) for an increasing SH order N .

where Pn,|m| is the associated Legendre polynomial and ym is given
as:

ym(ϕ) =


√

2 sin(|m|ϕ) if m < 0,

1 if m = 0,√
2 cos(|m|ϕ) if m > 0.

(4)

2.2. Binaural Rendering

To render a point source, the ear input signals s for the left (l) and
right (r) ear can be obtained by convolving the source signal x with
the head-related impulse response (HRIR) in the desired direction:

sl,r(t) = x(t) ∗ hl,r
HRIR(Ω, t) , (5)

where (∗) denotes the time-domain convolution operation.
In the time-frequency domain, assuming far-field propagation

thus plane-wave components X̄(Ω), the ear input signals are given as

Sl,r(ω) =

∫
Ω

X̄(Ω, ω)Hl,r
nm(Ω, ω)dΩ . (6)

Exploiting the orthogonality of the real SH basis functions, this yields
[3]

Sl,r(ω) =

N∑
n=0

+n∑
m=−n

X̆nm(ω)H̆l,r
nm(ω) . (7)

The time domain binaural signals sl,r(t) are obtained from (7) via an
inverse time domain Fourier transform.

3. SPHERICAL HARMONICS TAPERING

3.1. Tapering functions

As introduced in Section 2, the spherical harmonics domain con-
stitutes a spherical Fourier domain. Hence, any window function
applied in the SH domain introduces spatio-spectral leakage on the
sphere. The resulting sidelobes exhibit a periodic pattern. In the
case of HRTFs, with two receivers positioned symmetrically on the
sphere, these sidelobes may be especially critical as they may lead to
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Fig. 2. Cross section (θ = 90◦) of a spatial dirac pulse magnitude
in dB, reconstruction with N = 5 at Ω = [90◦, 90◦], and with
additional Hann tapering function of SH coefficients as in (8).

unwanted crosstalk between the ears. A common trade-off for select-
ing a particular window function is between side-lobe suppression
and main-lobe widening. We analyze two representative windowing
functions in the following.

We extend (2) to include the windowing function wN as

s(Ω) =

N∑
n=0

+n∑
m=−n

wN (n)σnmY
m
n (Ω) , (8)

and (7), accordingly:

Sl,r(ω) =

N∑
n=0

+n∑
m=−n

wN (n)X̆nm(ω)H̆l,r
nm(ω) . (9)

A hard truncation of the spherical order to N by dropping the
higher-order coefficients is equivalent to applying a rectangular win-
dow.

To fade out higher-order modes and suppress side-lobes, a taper-
ing function can be applied instead of a rectangular window. The
tapering is implemented by multiplying the SH coefficients with a
decreasing weight per order n, derived from a half-sided window
function. As an example, a Hann tapering windowwN up to SH order
N would be w3(n) = [1., 1., 1., 0.5], w4(n) = [1., 1., 1., 1., 0.5],
and w5(n) = [1., 1., 1., 1., 0.75, 0.25], while zero everywhere else.

3.2. Extended coloration compensation filter

Assuming a spherical scatterer object of radius r0 in a diffuse sound
field, the order dependent frequency response on the sphere can be
derived analytically [13]. Observing the spherical scatterer pressure
response of wavenumber k = 2πf/c, we expand on this work by
introducing a tapering function wN (n) weighting each mode n to

p̄w(kr0)|N =
1

4π

√√√√ N∑
n=0

wN (n)(2n+ 1)|bn(kr0)|2 . (10)

The mode strength on the rigid sphere is given as [14, 2.62]

bn(kr0) = 4πin
[
jn(kr0)− j′n(kr0)

h′n(kr0))
hn(kr0)

]
, (11)
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Fig. 3. Coloration compensation filter for SH order truncation, for
multiple truncated SH orders, with Hann and rectangular windowing
functions applied.

where jn is the spherical Bessel function, hn the spherical Hankel
function of the second kind, and (′) is the derivative with respect to
the argument.

Comparing the scatterer response above the spatial aliasing limit
Nfull > kr0 to the desired truncated order N leads to the extended
spectral equalization filter magnitude response

G(kr)|N =
p̄(kr0)|Nfull

p̄w(kr0)|N
. (12)

This spectral filter equalizes signals of order N to the frequency
response of a signal at order Nfull > kr0 [13]. Extending the design
to account for a window function compensates for the spectral effects
of applying SH tapering, which in turn suppresses sidelobes. A
reference implementation and sound samples are available online1.

4. EXPERIMENTAL EVALUATION

4.1. Head-related Transfer Functions

Experiments are carried out using a set of spherical anechoic far-
field measurements of a Neumann KU100 dummy-head, available
publicly [16]. The set comprises measurements on an equidistant
spherical Lebedev grid with 2354 nodes, which should enable a stable
transform into the SH domain with low spatial aliasing over the entire
audio frequency range. The spherical harmonics transform of the
HRTFs is carried out by a least mean square fit with Tikhonov regular-
ization directly to the target order. When deriving the compensation
FIR filter we used the time sampling frequency fs = 48 kHz, leading
to Nfull = 39 and a scatterer radius of r0 = 0.0875 m.

4.2. Coloration Model

To model the coloration error (CE) between the reference HRIRs
(time-domain) and the reconstructed HRIRs (after order-truncation in
the SH-domain), a model proposed by Brinkmann and Weinzierl was
used [17]:

CE = wl∆Ll + wr∆Lr , (13)

1https://github.com/chris-hld/spaudiopy

where wl and wr are binaural weighting factors. The domain level
differences ∆Ll/r per auditory filter band from 50 Hz to 20 kHz for
each ear are calculated by May’s localization model implementation
[18], which includes rectification, compression, and an auditory filter
bank. The binaural weights are given as [17]

wl =
2∆Llr/10

1 + 2∆Llr/10
, wr = 1− wl . (14)

The weights account for the fact that coloration errors are perceptually
more relevant for the ear receiving a louder signal [17].

5. RESULTS

An ideal representation of a point source on the sphere is a spatial
dirac pulse, which exhibits infinite spatial bandwidth. Truncating
the Fourier series (2) to an order N < ∞ causes a non-ideal re-
construction, as shown in Fig. 1, resulting e. g. in spatial blur and
coloration.

In the case of a simple truncation to N = 5, which is equivalent
to applying a rectangular window, Fig. 2 shows the most prominent
sidelobe is the backlobe, suppressed only by about 15 dB. Introduc-
ing a half-sided Hann tapering function, as described in Section 3,
improves the backlobe suppression drastically to more than 40 dB.
However, the sidelobe suppression comes at the expense of a slightly
quieter and widened mainlobe.

When applying tapering coefficients to auralizations, it is im-
portant to compensate for the spectral distortion introduced by any
window, as described in Section 3.2. Figure 3 shows the frequency
response of that filter, which equalizes the diffuse field response of
an order truncated soundfield. Compared to the simple rectangular
truncation, the Hann function requires only marginally more high
frequency boosting.

The error between the reference time-domain HRTF and its third
order SH representation is visualized in Fig. 4 and detailed in Table 1,
with negligible error below 2.5 kHz. As can be seen, applying the
compensation filter even with a non-tapered window reduces the
overall coloration error (CE) in terms of the root-mean-squared error
(RMSE), which averages over frequency and angle. However, for both
untapered SH representations, the reconstruction error reveals a strong
angle dependence, with excess energy especially at the contralateral
side (cf. Fig. 4, (left) and (center)). This manifests itself in a large
maximum CE (cf. Table 1, max(CE(Ω)) and max(CE(Ω, f))). The
proposed tapering seems to reduce the error maxime and improve the
contralateral ear signals (cf. Fig. 4, (right)).

The CE for a point source moving in the horizontal plane is
shown in Fig. 5 for a truncation to third order with a rectangular win-
dow without any spectral equalization, a rectangular window with its
spectral compensation, and a Hann tapering window with its spectral
compensation. The spectral compensation of the rectangular win-
dow reduces coloration in the front and in the back at the expense
of stronger coloration to the sides. Applying an additional tapering
and the corresponding compensation filter, the variance of estimated
coloration is lower and it is distributed more evenly across directions.
This can also be seen in Table 1 in a reduction of the max(CE(Ω))
and max(CE(Ω, f)) coloration estimate. This indicates that, any-
where on the sphere, the maximum coloration introduced by the order
truncation of the HRTFs is greatly reduced by applying a tapering
window together with the proposed extended coloration compensation
filter. Informal listening tests confirmed a clearly audible effect of
the tapering window on the binaural decoding of Ambisonics signals
at third and fifth order, and indicate improvements for even higher
orders.
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Fig. 4. Error between time domain HRTF and spherical harmonics reconstruction of third order, averaged across 39 auditory filter bands
in dB; (left) truncation using a rectangular window without compensation, (center) truncation using a rectangular window with coloration
compensation, (right) Hann tapering window with proposed extended coloration compensation.

Full Band Above 2.5 kHz
RMSE max(CE(Ω)) max(CE(Ω, f)) RMSE max(CE(Ω)) max(CE(Ω, f))
(dB) (dB) (dB) (dB) (dB) (dB)

no tapering, no compensation 2.0234 4.0425 20.8375 6.3004 13.1143 20.8375
no tapering, with compensation 1.7614 4.8412 22.6504 3.8908 14.9174 22.6504
Hann tapering, with compensation 1.7199 3.1641 13.4945 3.3664 8.7494 13.4945

Table 1. Coloration errors (CE) estimated from a 20 ms white noise burst convolved with third-order reconstructed HRIRs, for 1024
directions distributed uniformly on the sphere. RMSE shows root-mean-squared error over frequency and angle, max(CE(Ω)) the maximum
frequency-averaged CE, and max(CE(Ω, f)) the maximum CE at any filter band frequency and angle.
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Fig. 5. Coloration estimation of third order HRIR reconstruction
above 2.5 kHz for impulse responses moving around the listener in
ten degree steps in the horizontal plane (θ = 90◦).

6. DISCUSSION

As noted in prior work, order truncation of HRTFs results in high-
frequency roll-off that an order-dependent compensation filter can
equalize [13]. As expected, a higher SH representation order gener-
ally results in less residual error, nonetheless, sidelobes and spectral
distortion are still noticeable at high orders. However, due to the
angle-dependence of the coloration error, the inherently static com-
pensation filter may boost erroneous aliased components and tends to
sound excessively bright for lateral sources, as shown in Fig. 4.

By applying a tapering function in the SH domain, e. g. the
proposed half sided Hann-function, the coloration error could be
reduced through a suppression of the sidelobes on the sphere and thus
enhancing the directional pattern. In the case of binaural rendering,
suppressing the backlobe appears to be particularly critical to reducing
crosstalk between the ear signals due to the symmetric arrangement of
the ears. Here, tapering seems to mitigate various perceptual artifacts,
most notably it helps restoring interaural level differences (ILDs)
degraded by the crosstalk.

We proposed an extension of the spectral roll-off equalization
of order-limited signals proposed in [13] to account for a tapering
function, thus combining the roll-off compensation with the sidelobe
suppression of a tapering window.

The coloration compensation can also be applied when encoding
the HRTFs, i.e., no additional processing is required at run time when
decoding Ambisonics audio to binaural signals.

Future work includes comparing various window design methods,
e. g. the max-rE weighting and a formal listening test.

7. SUMMARY AND CONCLUSION

This work investigated the effect of truncating the spherical harmon-
ics order, in particular when applied to head-related transfer functions
(HRTFs). It was observed that the truncation causes both spatial
degradation and also coloration. While applying an order-dependent
compensation filter reduces high-frequency roll-off due to order trun-
cation, it does not compensate for angle-dependent artifacts. Tapering
in the spherical harmonics domain in combination with an extended
order-dependent coloration compensation filter was shown to im-
prove binaural Ambisonics rendering significantly without increasing
computational complexity at run time. Both informal listening and a
binaural model confirmed the perceptual quality.
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