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ABSTRACT
Recent work on acoustic parameter estimation indicates that geo-
metric room volume can be useful for modeling the character of an
acoustic environment. However, estimating volume from audio sig-
nals remains a challenging problem. Here we propose using a convo-
lutional neural network model to estimate the room volume blindly
from reverberant single-channel speech signals in the presence of
noise. The model is shown to produce estimates within approxi-
mately a factor of two to the true value, for rooms ranging in size
from small offices to large concert halls.

Index Terms— Room acoustics, room size, non-intrusive pa-
rameter estimation, signal processing, convolutional neural network

1. INTRODUCTION

A current challenge in audio processing is the dynamic parameteri-
zation of the local acoustic space of a listener. The parameters that
describe the acoustic character of a user environment can be used to
model or design audio filters for various applications. Knowledge
of the local room acoustics can be used to improve the plausibility
of immersive audio in mixed reality applications that aim at blend-
ing real and virtual sound sources together into a cohesive auditory
scene [1]. Speech-processing applications may use the room im-
pulse response (RIR) parameters to enhance a speech signal or aid
dereverberation algorithms, for the purpose of word recognition or
communication clarity [2, 3]. Audio forensics strategies may benefit
from this information for room identification tasks [4, 5].

Measured RIRs can be used to derive parameters such as rever-
beration time (T60) and direct-to-reverberant ratio (DRR). The RIR
is composed of early, low-order reflections that are dependent on the
source and receiver positions, followed by position-independent dif-
fuse reverberation [6]. Given a description of an acoustic space in
terms of these acoustic parameters, it is possible to model the re-
sponse of a room for which a measured RIR is not available [7].
Another position-independent parameter that is useful for modeling
the character of a room is the geometric room volume. Room vol-
ume has been linked to the estimation of the critical distance, which
is the distance at which the direct and reverberant portions of a sound
source hold equal power, i.e., the point at which the DRR is 0 dB. An
approximation of critical distance as a function of the room volume
is given by Sabine’s equation [6]:
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where Q denotes the wave-source directivity, A is the room surface
area, and V is the room volume in cubic meters. Given measured
or estimated values of T60, V , and Q, (1) can be used to determine
whether a virtual source should be rendered with a DRR smaller
or greater than 0 dB, which can serve as a distance cue for the lis-
tener [6]. Similarly, the mixing time, another perceptually relevant
parameter, has been related to cubic volume via Mt “

?
V [1].

Room volume has also been proposed as a key part of the “rever-
beration fingerprint” of a room [7, 1, 4]. This fingerprint is limited to
the diffuse part of the reverberation as it characterizes a room in iso-
lation from the orientation and directivity of sources and receivers.
Room volume can be used to retrieve initial diffused power, which
together with the T60 as a function of frequency, describes the en-
ergy decay relief (EDR). The power of the diffuse reverberation is
inversely proportional to the cubic volume [7]. This relationship can
also be used to adapt a known RIR to a new room:

Plocalpfq “ Prefpfq
Vref

Vlocal
, (2)

where P is the initial power spectrum of the EDR.
In practice, typically little or no prior information is available

about a user’s local acoustic environment, and measuring RIRs in
situ is often not an option. Furthermore, variations of the user’s en-
vironment over time may require updating local acoustic parameters
dynamically. Therefore, blind prediction methods are necessary to
estimate acoustic parameters on the fly. This would allow for adap-
tive processing schemes which can enable users to freely roam the
world while the audio rendering engine system adaptively updates
according to the present space.

While complex multimedia systems may be able to leverage
depth sensors or cameras for estimating the local room volume, here
we target scenarios where the available input data are limited to one
or multiple microphone signals. In a real-world situation the cap-
tured audio signals may be affected by different types of environ-
mental noise which may degrade the performance of an estimation
algorithm. Past work regarding blind room parameter estimation in
the presence of noise has focused on T60 and DRR. The 2015 ACE
challenge [8, 9] set the bar for estimating T60 and DRR from speech
signals in the presence of ambient, babble, or fan noise, with signal-
processing based techniques achieving the best results in terms of
the mean-squared estimation error and correlation between true and
estimated parameters.

Recent work on T60 estimation showed promising results using
deep neural networks [10, 11]. Here we propose using a deep con-
volutional neural network (CNN) to blindly estimate room volume
from noisy speech signals recorded in a user’s acoustic environment.
The network is evaluated on a set of publicly available RIRs with
known room volume information. Results indicate that room vol-
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ume can be estimated blindly within an error of about a factor of two
of the true volume.

2. RELATED WORK

Room volume estimation has often been approached as a classifica-
tion problem. In the field of audio-forensics, early attempts used
MFCC-based features to identify the room of a previous record-
ing from a closed set [4]. Overall accuracy reached 84%. How-
ever, the method was not evaluated on unseen rooms. Peters et al.
studied room identification using machine learning and a corpus of
measured RIRs [12]. The study collected a total of 168 RIRs for 7
unique rooms, convolved with anechoic speech to create reverberant
examples. A room classifier was implemented with Gaussian Mix-
ture Models using MFCC acoustic features. An identification accu-
racy of 85% was achieved although the method was not evaluated
with respect to additive noise or rooms not contained in the training
set. Shabtai et al. [13] also propose a room volume classification
paradigm but working directly on RIRs rather than reverberant sig-
nals, effectively making the method non-blind.

Similarly, Murgai et al. propose treating abrupt speech stops in
reverberant speech signals directly as the RIR to semi-blindly esti-
mate the T60, the clarity index (C50), early reflections density, and
others, including room volume [14]. While the results for volume
estimation through regression were promising, the data set used con-
sisted of RIRs obtained via the image source method (ISM), which
may not reflect the complexity of real, measured RIRs. Further-
more, the robustness of the method to environmental noise was not
reported.

3. PROPOSED APPROACH

The present study focuses on the blind estimation of the local room
volume from single-channel speech signals in the presence of differ-
ent forms of noise, with no prior knowledge of the RIR, dry speech
signal or room geometry. We propose formulating the estimation
as a regression problem by using a convolutional neural network
(CNN) model trained with examples including different types of
noise at various SNRs levels, using measured RIR data spanning a
wide range of room sizes. To avoid overfitting, the test set used to
evaluate the model performance does not contain any RIRs measured
in rooms that are part of the training set.

3.1. Data Collection

A corpus of measured RIRs was collected with the aim of training
and testing the proposed CNN model over a wide range of room vol-
umes and types. Table 1 summarizes the data corpus. RIRs for which
room volume information was available were drawn from 11 public
data sets as well as a proprietary database, resulting in a total of 83
unique rooms. All RIRs were re-sampled at 16 kHz. To reduce pos-
sible imbalance and overfitting, the representation of each unique
room was capped to a maximum of 100 examples [15]. Figure 1
illustrates the distribution of the unique room volumes on a loga-
rithmic scale. The bimodal pattern and center gap in the histogram
of the real room measurements reflects the nature of the collected
datasets; in the field of room acoustics, small rectangular rooms or
large concert halls are often the object of study.

Dataset # rooms sampling rate [kHz]

ACE [8] 7 48
AIR [16] 4 48
CHRG [17] 13 12.78
ECHOTHIEF [18] 1 44.1
MARDY [19] 1 48
OPENAIRLIB [20] 22 various
PORI [21] 2 48
QMUL [22] 3 96
REVERB2014 [3] 3 16
SMARD [23] 1 48
SOFA [24] 1 44.1
(proprietary) 25 48

Total 83

Table 1. Summary of selected RIR databases.
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Fig. 1. Room volume distributions for real and synthetic rooms.

3.2. Data Augmentation

To mitigate the lack of available data around approximately 1000
m3, simulated RIRs were added to the training corpus. The sim-
ulations were obtained using adaptive rectangular decomposition
(ARD), a time-domain spectral wave solver [25]. Synthetic RIRs
for a single source position and 50 random receiver positions were
computed for 50 polygonal rooms of irregular, convex geometry.
The rooms spanned a volume range of 59 m3 to 2715 m3 and
simulations were band-limited to 2 kHz. These choices were found
to sufficiently augment the data while managing computational re-
quirements, which scale linearly with volume and the fourth power
of the upper frequency limit.

A wave-propagation model based on direct solution of the wave
equation is more realistic than geometric approximations, such as
ISM, due to the ability to model the response of arbitrary geometries
and account for diffraction and scattering effects. Early experiments
indicated that augmenting the data with synthetic RIRs reduced the
volume prediction error. Synthetic RIRs lack some expected irreg-
ularity features of measured RIRs, causing risk of overfitting if the
dataset is largely synthetic [15]. Therefore, the simulations were
only used for data augmentation and not included in the test set.

3.3. Stimuli Generation

To produce simulated examples of speech in noisy environments, the
RIRs were convolved with anechoic speech signals (male and female
speakers), following a similar protocol to the ACE challenge [8].
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Each example y was created as:
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where h1 and h2 are the RIR vectors used for the speech signal
and noise signal respectively (belonging to the same room), x is the
speech vector, ξ is the desired SNR level and ξs is the power ratio of
the clean speech and noise signal v. The SNR levels used were +Inf
(no noise), +20 dB, +10 dB and 0 dB.

Similarly to earlier work [10], the noise was simulated by shap-
ing Gaussian noise with the spectra of ambient noise recorded using
a spherical microphone array in various environments. Speech sam-
ples were drawn randomly from a data set of over 900 semi-anechoic
recordings and convolved with RIRs, to yield a total of 100 samples
for each unique room in the data corpus. The resulting noisy speech
signals were split into frames with a fixed duration of 4 seconds with
an overlap of 1 second. The level of each chunk was normalized us-
ing A-weighting. The total number of fixed-duration examples was
23072.

3.4. Training and test sets

All noisy reverberant speech samples were assigned to either the
training set or the test set based on the RIRs used to generate them,
such that no room would be part of both sets. The 7 rooms from the
ACE dataset [8], 2 large rooms from the OpenAir dataset [20], and
one concert hall from the CHRG dataset [17] were selected for the
test set. To monitor performance during training and prevent over-
fitting, the training set was further split into training and validation
sets using a 9:1 ratio. The data split is summarised in Table 2.

Set # examples real rooms simulated rooms

Training 19 608 66 47
Validation 1713 7 3

Test 1751 10 -

Table 2. Summary of data split.

4. FEATURE REPRESENTATION

Exploratory listening tests looked at the effect of room volume on
sound in order to obtain insights about which representations were
able to capture its influence on the signal. RIRs with similar T60,
but different volume, were convolved with a test sound. This pro-
cess highlighted the possible impact of low frequency effects. We
computed a set of exploratory features to provide the network with a
variety of spectro-temporal representations of the input signals. This
included Gammatone features, which were used in prior work on
T60 estimation[10].

The resolution specifications for the spectro-temporal features
were designed with the intent of keeping a low amount of trainable
network parameters. A low complexity model can yield more gener-
alizable results as well as shorter training times [15]. Thus, an ERB
Gammatone filterbank with 20 frequency bands from 50 Hz to 2 kHz
was used. Features were computed as the log-energy of frames of 64
samples, with a hop size of 32. This resulted in a 20ˆ1991 fea-
ture matrix for each 4-seconds clip. Other features able to capture
the low-frequency behaviour were investigated. Perhaps because of
higher room modes activity and interactions, large room volumes
pointed to higher low-frequency energy and higher cepstrum energy

Feature Dimensions

Gammatone filterbank 20ˆ 1991
DFT (up to 500 Hz) 1ˆ 1991

Magnitude-sorted DFT 1ˆ 1991
Cepstrum 1ˆ 1991

Envelope Follower 1ˆ 1991
Time-domain signal (low-passed) 1ˆ 1991

Table 3. Network Model Feature Stack.

conv1 conv2 conv3 conv4 conv5 conv6

size (1,10) (1,10) (1,10) (1,10) (3,9) (3,9)
stride (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

avgpoolsize (1,2) (1,2) (1,2) (1,2) (1,2) (2,2)
avgpoolstride (1,2) (1,2) (1,2) (1,2) (1,2) (2,2)

# filters 30 20 10 10 5 5

Table 4. Parameters of the convolutional layers used. The input
feature size was [25 ˆ 1991]. The network had a total of 12556
trainable parameters.

associated with frequency notch patterns. Pilot experiments were
conducted with a number of feature candidates. The finalized set of
features was concatenated into a single stack, as described in Table 3.
The final number of trainable parameters was 12556.

5. EXPERIMENTAL EVALUATION

5.1. Model Architecture

The proposed model architecture was based on CNNs due to their
suitability for capturing 2-dimensional time-frequency signal pat-
terns. The final model comprises six convolutional layers followed
by an average pooling layer, one dropout layer (50% rate), and a fi-
nal, fully connected layer with a single output node. Table 4 and
Figure 2 illustrate the full architecture employed. The filters were
designed to first convolve across time bins in one dimension and
then combine the spectral features in the last two layers.

5.2. Evaluation metrics

The problem was formulated as a regression problem on the log-10
of the room volume, ensuring that the estimation error would be re-
lated to its order of magnitude. Given the large range of room sizes,
a logarithmic estimate is deemed as more appropriate than a linear
one. The performance was evaluated in terms of the mean squared
error (MSE), the mean error (bias), and the Pearson’s correlation co-
efficient (ρ). Another metric used for this specific study is based
on the mean absolute logarithm of the ratio between the estimated
volume L̂ in m3 and the ground truth L:
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where N denotes the number of test samples and ln is the natural
logarithm. This metric summarizes the error in terms of the average
multiple of the estimated volume in m3 compared to the true volume.

5.3. Results

The model was implemented using the Microsoft Cognitive Toolkit
(CNTK [26]) and employed stochastic optimization with a squared
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Fig. 2. CNN architecture used. The dropout layer rate was 50%, followed by a fully connected layer with one output node.

error loss function [27] over 1000 epochs. The model was trained
and evaluated on the log10 of the room volume. Experiments were
performed with different feature combinations and different varia-
tions of the network specifications. The best output on the test set
created was given by the model hereby presented. To further val-
idate the results against non-simulated noise recordings, the model
was also tested directly on the development and evaluation sets used
for the ACE challenge [8]. These sets were generated by combining
real, recorded ambient noise and anechoic speech convolved with
measured RIRs. The rooms measured as part of the ACE corpus
ranged from 47.3 m3 to 364.6 m3.

Figure 3 illustrates the confusion matrices for the training set,
the test set, and the ACE corpus. The room volume estimates are
distributed around the ground truth across the range of tested room
sizes. In the range where real room data had to be augmented with
synthetic data, i.e., around 1000 m3, the training error shows a lower
variance, perhaps indicating a mismatch between the simulations
and the complexity of real measurements. Performance on the test
set was comparable to the training performance, indicating that the
model did not appear to be overfitting. Figure 3 (right) illustrates the
performance on the ACE corpus, i.e., the speech and noise samples
provided with the ACE challenge [8]. Note that these are the same
RIRs as in the test set below 1000 m3. As can be seen, the variance
of the error increases.

Table 5 shows the results of the prediction model for the metrics
introduced in Section 5.2. For the test set, containing only unseen
rooms, the model achieves an MSE of 0.19 and MeanMult factor of
2.27. For comparison, results are provided for the test set consider-
ing only the RIRs obtained from the ACE corpus. As can be seen,
the estimation bias increases while correlation decreases, indicating
that distinguishing small rooms (below 400 m3) is challenging, per-
haps due to insufficient training data. When evaluating the model on
the ACE corpus, which consists entirely of unseen data, performance
deteriorates. This may be due to a mismatch between the simulated
noise conditions in our data set and the real, recorded noise in the
ACE corpus. After excluding samples with SNR ă 18 dB from the
ACE corpus, the performance metrics are quite similar to the test
results for ACE rooms only (see Table 5). This indicates that a mis-
match between recorded and simulated noise may indeed explain
some of the differences in performance between the ACE corpus,
consisting entirely of unseen data, and the test set.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes estimating geometric room volume blindly from
noisy single-channel speech signals using a convolutional neural net-
work. The proposed model was trained on a data corpus comprising
measured as well as simulated RIRs. Unlike previous methods, the
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Fig. 3. Confusion matrices of the training set (left), test set (center),
and the ACE corpus (right).

MSE Pearson’s ρ MeanMult bias

training 0.20 0.89 2.25 0.02
test 0.19 0.90 2.27 -0.01

test (ACE rooms only) 0.16 0.41 2.16 -0.18

ACE corpus 0.43 0.28 3.31 -0.44
ACE corpus (high SNR) 0.19 0.39 2.28 -0.23

Table 5. Results with respect to log-10 of the volume for training
and test set, as well as the public ACE corpus of noisy, reverberant
speech recordings. For comparison, the performance of the test set
considering only RIRs contained in the ACE corpus is provided.

estimation was formulated as a regression problem in the logarith-
mic domain, and results were obtained for a test set containing only
unseen, measured RIRs. Results show that room volume can be es-
timated within approximately a factor of two of the true value, for
a wide range of room sizes. Performance deteriorated when eval-
uating the model on a completely separate, measured data corpus
of unseen rooms, speech, and ambient noise. However, when ex-
cluding examples with low SNR, results improved and were approx-
imately in line with the performance on the test corpus simulated
using the same rooms. This indicates that the data set generated here
for model training and testing is useful and, to some extent, realistic,
but should be extended to include a wider range of noise scenarios.
Overall, these initial results are encouraging, and increasing the size
and quality of the training data should improve the model’s perfor-
mance and ability to generalize.

Future work will address the uneven distribution of room sizes
and the limited scope of noise scenarios in the current data set. Fur-
thermore, alternative feature representations, e.g., the echo density
profile or the phase spectrum [28] could be studied. Neural network
explanatory techniques [29] may allow to identify the most suitable
spectro-temporal signal representation for blind volume estimation.
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