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ABSTRACT

Reverberation time is an important room acoustical parame-
ter that can be used to identify the acoustic environment, pre-
dict speech intelligibility and model the late reverberation for
binaural rendering, etc. Several blind estimation algorithms
of reverberation time have been proposed by analyzing recor-
ded speech signals. Unfortunately, the estimation accuracy for
the frequency dependent reverberation time is lower than for
the full-band reverberation time due to the lower signal ener-
gy in sub-band filters. This study presents a novel approach
for the blind estimation of reverberation time in the full fre-
quency range. The maximum likelihood method is applied for
the estimation of the reverberation time from low- to mid-
frequencies, and the reverberation time from mid- to high-
frequencies is predicted by our proposed model based on the
analysis of the reverberation time calculated from room im-
pulse responses in different rooms. The proposed method is
validated by two experiments and shows a good performance.

Index Terms— reverberation time, full frequency range,
blind estimation, room acoustics, speech signals.

1. INTRODUCTION

Reverberation time (RT60) is defined as the time it takes for
the acoustical energy density in an enclosure to attenuate by
60 dB after switching off the sound source. The conventio-
nal methods for estimating RT60 are based on recorded white
noises (interrupted noise method [1]), measured room impul-
se responses (Schroeder method [2]), or the Sabine or Eyring
equations [3, 4]. However, these methods are not always suita-
ble for calculating the RT60, especially in common consumer
scenarios and in noisy environments. It is desirable to obtain
the RT60 from a recorded reverberant signal without knowing
the excitation signal, the geometry and the surface material of
the room. Recently, several algorithms [5, 6, 7, 8, 9, 10] have
been proposed to blindly estimate the RT60 based on recor-
ded speech signals. Some of these methods, such as [7], [9]
and [10], have been shown to give good performances of the

obtained RT60 even in noisy environments. However, the esti-
mation accuracy for the frequency dependent RT60 is lower
than for the full-band RT60 due to the smaller bandwidth of
the sub-band filters and thus the lower signal energy.

Frequency dependent RT60 can be used to model late re-
verberation for auralization purposes. The simulated virtu-
al acoustical environment (VAE) should be highly consistent
with the acoustics of an actual real room, especially for aug-
mented reality (AR) applications [11]. Therefore, a high esti-
mation accuracy of RT60 in the full frequency range is requi-
red. In the present study a hybrid method for blind estimation
of the frequency dependent RT60 has been developed. The
maximum likelihood (ML) method [7] is applied to estimate
the RT60 from low- to mid-frequencies since it has demons-
trated a good performance in a noiseless or noisy environment
in the detailed benchmarking shown in [12]. The RT60 from
mid- to high-frequencies is predicted by applying our propo-
sed model, which is based on the analysis of the RT60 calcula-
ted from six room impulse responses (RIRs) from the Aachen
Impulse Response (AIR) database [13].

2. BLIND ESTIMATION OF THE FREQUENCY
DEPENDENT REVERBERATION TIME

2.1. Short Overview of the Maximum Likelihood Method

Löllmann and Vary [14] have modeled the sound decay d(k)
within a speech pause caused by the room reverberation using
a discrete random process:

d(k) = Ar m(k) e−ρ k/fs u(k), (1)

where Ar denotes the amplitude of the sound decay and u(k)
represents the unit step function. fs is the sampling frequency
and m(k) represents a random sequence with zero mean and
normal distribution. ρ is the decay rate, which is related to the
RT60 by:

ρ =
3

log10(e) RT60
. (2)

The sound decay d(k) is further represented by a random va-
riable with Gaussian probability density function (PDF) based
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on the sound decay model (cf. Eq. 1):

Pd(k)(x) =
1√

2π ξ(k)
e

− x2

2 ξ2(k)


, (3)

with
ξ(k) = Ar e

−ρ k/fs u(k) . (4)

Then the decay rate ρ can be obtained by finding the maxi-
mum estimated ρ of the log-likelihood function (natural loga-
rithm of the likelihood function) from a given sequence d(k)
of length N [7, 14]

ρ =argmax
ρ

{
− N

2

(
−ρ (N − 1)

fs
+ ...

... + ln

(
2π

N

N−1∑
i=0

d2(i) e
2ρi
fs

)
+ 1

)}
.

(5)

Finally, the RT60 can be calculated based on Eq. 2. However,
the estimation accuracy for the RT60 in noisy environments is
frequency restricted by using the ML method.

2.2. Model of The Reverberation Time from Mid- to
High-Frequencies

In the present study, we have calculated and analyzed the fre-
quency dependent RT60 in 6 different rooms based on the
RIRs from the AIR database [13]. The RIR for each room
is filtered through a gammatone filter bank [15] with a band-
width of one equivalent rectangular bandwidth (ERB) [16],
which is widely used for modeling the peripheral filtering in
the cochlea. The frequency dependent RT60 is then determi-
ned using the Schroeder method [2] with a least squares fitting
of the energy decay curve (EDC) between -5 and -25 dB for
the RIR in each frequency channel h(fc, t). The equation for
calculating the EDC is expressed as:

EDC(fc, t) = 10 log10

(∫ ∞
t

h2(fc, t) dt

)
≈ αfct+ βfc , (6)

where h(fc, t) is the filtered RIR at the center frequency fc
of the gammatone filter bank. Fig. 1 shows the RT60 in 6 dif-
ferent rooms (studio booth, office room, meeting room, lec-
ture room, stairway and aula carolina) as a function of the
center frequencies of the gammatone filter bank. The calcula-
ted RT60 (solid black lines) is in accordance with the results
shown in [13]. It can be observed that the RT60 decreases mo-
notonically from 4 to 20 kHz due to the material and air ab-
sorption. This effect can be utilized to build a model for the
RT60 from mid- to high-frequencies. Therefore, in this stu-
dy, a 2nd-order polynomial function is applied as a model to
predict the RT60 from mid- to high-frequencies, which can be
expressed as:

R̂T60(fc) = a (fc − 4 kHz)2 + b (fc − 4 kHz) + RT60,4 kHz

for 4 kHz ≤ fc ≤ 20 kHz
(7)

where R̂T60(fc) is the modeled reverberation time, RT60,4 kHz
is the reverberation time measured at 4 kHz and fc is the cen-
ter frequency of the gammatone filter bank. The two model
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Fig. 1. Frequency dependent RT60 calculated by a gammatone
filter bank and the Schroeder method (black solid lines). The
red dashed lines denote the modeled RT60 from 4 to 20 kHz
with our proposed method.

parameters a and b for the given six rooms can be estima-
ted by solving the nonlinear least squares optimization pro-
blem. For that, we used the trust-region algorithm [17] pro-
vided by the MATLAB Curve Fitting Toolbox. The R̂T60(fc)
from 4 to 20 kHz is displayed in Fig. 1 (red dashed lines). No-
te that other models, such as exponential function, etc., can
also be used to model the reverberation time from mid- to
high-frequencies. In the case of an unknown room, these two
parameters can be estimated from the more reliable estimates
of the RT60 in mid-frequency channels. For this purpose, the
averaged reverberation time from 1 to 4 kHz (RT60,1-4 kHz) is
mapped to the model parameters a and b by a 2nd-order poly-
nomial function, since the RT60 from 1 to 4 kHz can be well
estimated using the ML method from a recorded speech signal
(cf. Fig. 4). The mapping functions can be written as follows:

a = c1 RT
2
60,1-4 kHz + d1 RT60,1-4 kHz + e1 , (8)

b = c2 RT
2
60,1-4 kHz + d2 RT60,1-4 kHz + e2 . (9)

The parameters c1, c2, d1, d2, e1 and e2 are fit to the estimated
model parameters a and b, and the RT60,1-4 kHz for these six
different rooms also by using the trust-region algorithm.

2.3. Hybrid Method for Blind Estimation of Frequency
Dependent Reverberation Time

Fig. 2 shows the block diagram of our proposed algorithm for
blind estimation of the RT60 from 100Hz to 20 kHz. The re-
corded speech signal is first filtered through a gammatone fil-
ter bank with a bandwidth of one ERB from 100Hz to 4 kHz,
and the RT60 in each frequency channel is blindly estimated
by the ML method (cf. sec. 2.1). In the case of a noisy en-
vironment, the accuracy of the blindly estimated RT60 might
be reduced. Therefore, a median filter is applied as a smoo-
thing filter for the estimated RT60 from 1 to 4 kHz. Then the
averaged reverberation time from 1 to 4 kHz (RT60,1-4 kHz)
is calculated to obtain the model parameters a and b accor-
ding to Eqs. 8 and 9. After that, the RT60 from mid- to high-
frequencies (4-20 kHz) is predicted based on the estimated
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Recorded speech signal

   Blind estimation of the reverberation time up 

to 4 kHz using the Maximum Likelihood method

Smoothing the reverberation time from 1 to 4 kHz

Filtering through a gammatone filter bank
......

Prediction of the reverberation time from 

4 to 20 kHz based on the proposed model

Estimated reverberation time in the full frequency range

Fusion of the estimated reverberation 

  time in the two frequency ranges 

Fig. 2. Structure of the method for blind estimation of the
frequency dependent reverberation time.

reverberation time at 4 kHz (RT60,4 kHz) and the obtained mo-
del parameters a and b by using Eq. 7. Finally, the RT60 from
100Hz to 20 kHz can be determined.

3. PERFORMANCE EVALUATION

Two experiments were performed to evaluate (a) the accura-
cy of the prediction model for the RT60 from mid- to high-
frequencies, and (b) the performance of the proposed method
for the estimation of the RT60 from low- to high-frequencies.

3.1. Performance Evaluation of the Prediction Model
from Mid- to High-Frequency Reverberation Time

The first experiment is to evaluate the performance of the
model for predicting the RT60 from mid- to high-frequencies
using four sets of RIRs from the Open AIR Library [18]
measured in the Cripta di San Sebastiano (Room A), Chiesa
di San Biagio (Room B), York Guildhall Council Chamber
(Room C), and Stairway in the University of York (Room
D). The frequency dependent RT60 are calculated by the
Schroeder Method (Eq. 6) and the averaged RT60 from 1 to
4 kHz (RT60,1-4 kHz) is used to predict the reverberation time
from mid- to high-frequencies. Fig. 3 shows the comparison
between the actual RT60 (black solid line) and the predic-
ted RT60 (red dashed line) from 4 to 20 kHz for these four
rooms. It is clear to see that the predicted RT60 is well mat-
ched with the actual RT60 over frequencies. To quantify the
estimation accuracy of this prediction model, the average of
estimation errors (AE) of the predicted RT60 over frequencies
is calculated for each room according to:

AE =

∑Nfc
i=1 |R̂T60 (fc,i)− RT60 (fc,i)|

Nfc
, (10)

where Nfc denotes the number of center frequencies of the
gammatone filter bank from 4 to 20 kHz, R̂T60 (fc,i) and
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Fig. 3. Comparison between measured and predicted reverbe-
ration time from mid- to high-frequencies.

RT60 (fc,i) denote the predicted and actual RT60, respective-
ly. The results in Table 1 illustrate the high accuracy of the
predicted RT60. The largest AE is about 0.03 s, suggesting
that the proposed model can be well used to predict the RT60

from mid- to high-frequencies.

Room A B C D
AE 0.02 s 0.03 s 0.03 s 0.03 s

Table 1. Averaged estimation error of the predicted reverbe-
ration time from mid- to high-frequencies.

3.2. Performance Evaluation of the Hybrid Method for
the Estimation of the Frequency Dependent Reverberati-
on Time

In the second experiment, the four RIRs used in the first ex-
periment are applied to evaluate the performance of the hy-
brid method for estimating the RT60 over the full frequen-
cy range. An anechoic speech signal from [19] is convolved
with these RIRs to simulate reverberant speech signals. Then
a white Gaussian noise (WGN) is added to the reverberant
speech signals with Signal-to-Noise Ratios (SNRs) of 60, 30,
20 and 10 dB to simulate the additive noise at the micropho-
ne. These simulated reverberant speech signals are used to
blindly estimate the RT60 from 100Hz to 20 kHz using our
proposed method (cf. sec. 2). To simplify the simulation, the
frequency distribution of noises in real indoor environments
was not considered, i.e., noises should have a strong power in
low-frequencies.

Fig. 4 shows the estimated RT60 using the ML and our
proposed method (hybrid method) from a reverberant speech
signal with different SNR levels. The black solid lines repre-
sent the reference RT60 calculated from the RIRs using the
Schroeder method (Eq. 6). It is clearly visible that the RT60

can be well estimated up to approx. 2 kHz using the ML me-
thod1 with different SNR levels. However, the accuracy of

1An upper limit of the R̂T60(fc,i) is set to 2.5 s for the ML method
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Fig. 4. Blind estimation of reverberation time in full fre-
quency range from a reverberant speech signal with diffe-
rent signal-to-noise ratios (SNRs). The left and right columns
show the estimated reverberation time using the Maximum
Likelihood method and the hybrid method, respectively.

the blindly estimated RT60 from 2 to 8 kHz is reduced by de-
creasing the SNR levels. The reason for this may be that the
speech signal has a lower energy at high frequencies compa-
red to low- or mid-frequencies. The high estimation errors for
the RT60 in high frequency channels are consistent with the
results presented in [20].

For the hybrid method, the RT60 is smoothed over fre-
quencies from 1 to 4 kHz to reduce the estimation errors
caused by additive noises. Furthermore, the RT60 from 4 to
20 kHz is predicted by our proposed model. It should be noted
that the smoothing process is only to ensure reliable values
fo the estimated RT60 between 1 and 4 kHz by using the ML
method, since the reverberation time from 1 and 4 kHz is
important to predict the reverberation time from mid- to high-
frequencies. It can be seen that the estimated RT60 is well
in agreement with the reference RT60 over the frequencies.
The AE (Eq. 10) of the estimated RT60 over frequencies is
calculated for each room and SNR level by using the ML and

hybrid method (from 100Hz to 20 kHz). As shown in Table 2,
the hybrid method achieves a good estimation accuracy for all
cases (the highest AE is 0.11 s), which was consistent with the
visual inspection in Fig. 4. The AE of estimated RT60 is clear-
ly lower for the hybrid method in comparison with the ML
method, especially for the low SNRs. In the present study, the
ML method is used directly to determine the RT60 from low-
to mid-frequencies. It can be seen that the estimated RT60 in
low sub-bands (from 100 to 200Hz) shows some deviations
from the reference. These estimation errors can be minimized
by using a modified Rayleigh distribution model [21] for the
RT60 at low-frequencies. Since our study focuses on the pre-
diction of RT60 from mid- to high-frequencies, this model is
not included in our experiment.

SNR Room A Room B Room C Room D
ML method

10 dB 0.37 s 0.43 s 0.43 s 0.49 s
20 dB 0.34 s 0.35 s 0.34 s 0.37 s
30 dB 0.26 s 0.28 s 0.28 s 0.30 s
60 dB 0.11 s 0.16 s 0.21 s 0.21 s

Hybrid method
10 dB 0.09 s 0.09 s 0.10 s 0.11 s
20 dB 0.06 s 0.09 s 0.09 s 0.08 s
30 dB 0.05 s 0.09 s 0.08 s 0.08 s
60 dB 0.04 s 0.08 s 0.08 s 0.07 s

Table 2. Averaged estimation error of the predicted reverbe-
ration time using the maximum likelihood method and the hy-
brid method with different SNRs.

4. CONCLUSIONS

A hybrid method for blind estimation of the frequency depen-
dent RT60 is proposed. The ML method is used to determi-
ne the RT60 up to 4 kHz, and the RT60 from 4 to 20 kHz is
predicted by applying a model based on the analysis of the
RT60 calculated from 6 RIRs from the AIR database. In ad-
dition, a smoothing filter is used for the RT60 between 1 and
4 kHz to reduce the inaccuracies caused by additional noises
at the microphone. Two experimental results show the good
performance of our proposed method. The blindly estimated
RT60 from low- to high-frequencies in an unknown room is
useful to rapidly adapt virtual 3D-Audio to local environment
acoustics [11]. The further work is to use more RIR sets to
build a more accurate model. In addition, the modified Ray-
leigh distribution model will be applied to predict the RT60 in
low-frequencies.
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