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ABSTRACT

Current state-of-the-art music boundary detection methods
use local features for boundary detection, but such an ap-
proach fails to explicitly incorporate the statistical properties
of the detected segments. This paper presents a music bound-
ary detection method that simultaneously considers a fitness
measure based on the boundary posterior probability, the
likelihood of the segmentation duration sequence, and the
acoustic consistency within a segment. Evaluation shows that
our method improves segmentation F0.58-measure by about
10 points compared to DNN with peak-picking, a popular
scheme used in the state-of-the-art music boundary detectors.

Index Terms— music information retrieval, music bound-
ary detection, deep learning, duration model

1. INTRODUCTION

Music boundary detection is the task of detecting, in an audio
signal, edges of music structure such as ”verse” and ”chorus.”
It is an important problem in music information retrieval, such
as for visualization or summarization of music [1].

Current methods that are competitive with the state-of-
the-art music boundary detectors [2] are potentially prone to
emitting inconsistent segmentations. Such inconsistencies oc-
cur because they detect each boundary inside an audio signal,
independently of the properties of the segmentations. Thus,
for example, in the first verse of a song, the verse and chorus
may be segmented whereas in the second verse, the verse and
chorus may not be segmented.

This kind of failure mode is easily detected by taking
into account long-term segment durations and homogeneity
within a structure segment. For example, suppose an esti-
mated sequence of segment duration measure lengths is given
as (16, 16, 8, 16, 4, 4, 4, 4, 8). Since music structure has a
unique ”language” of segment durations, one would suspect
that either the four successive 4’s is one segment of 16 mea-
sures or segments of length 16 is actually four successive
segments of 4 measures. Furthermore, the choice can be nar-
rowed down by assessing whether a segment remains more
homogeneous by merging successive 4’s into one segment, or
splitting 16’s into four successive 4’s.

Boundary
Fitness

Homogeneity
Fitness

Candidate
Segmentation

Duration
Fitness score=1

score=6

score=5

score=12

+

+

Input music audio 

Find the best segmentation from the candidates

Boundary
Fitness

Homogeneity
Fitness

Best
Segmentation

Duration
Fitness score=6

score=5

score=5

score=16

+

+

Beam-search

Fig. 1: Overview of our method.

In this paper, we propose a music boundary detection
based on this kind of hybrid sources of hypotheses, by ex-
tracting a segmentation that simultaneously optimizes a fit-
ness measure of the segmentation inside a song, comprising
of (1) structure segment boundaries, (2) sequence of segment
durations, and (3) homogeneity of timbre within a segment.

Our contributions are as follows: (1) we present a way to
combine deep neural network (DNN)-based boundary detec-
tor, various segment duration models and segment homogene-
ity model using beam-search, (2) we propose various higher-
order duration models for modeling segment durations (in
beats) to show that more expressive model does contribute
to improved performance, and (3) we show that incorporat-
ing fitness measure of duration and timbre homogeneity con-
tributes to improved segmentation quality, primarily by pre-
venting over-segmentation.
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2. RELATED WORK

Music boundary detection is tackled by exploiting (1) nov-
elty of acoustic features on boundaries, (2) homogeneity of
timbral features inside a segment, and (3) repetition of fea-
tures [3]. Most methods tackle one of these characteristics,
or a hybrid [4]. Recent methods explicitly find the repetitive
structure using matrix factorization [5], or employ deep neu-
ral networks [6, 2] to directly estimate the boundaries based
on local acoustic features and long-term similarity matrix.

Music structure is not only homogeneous, repetitive, and
has novel boundaries, but also has a predictable segment du-
ration sequence. Indeed, a unigram or bigram duration model
is often used in music boundary detection [7].

3. METHOD

In this paper, we develop a hybrid scheme like [4] based on
novelty, repetition, homogeneity, and duration. The former
three are attained implicitly using a deep neural network
boundary detector, inspired by the recent state-of-the-art [2].
We also explicitly express homogeneity through a dedicated
model that checks for timbre variance within each segment.
Furthermore we incorporate various forms of duration mod-
els and compare the segmentation performance with different
model expressiveness.

Let us formulate the boundary segmentation problem.
We denote a possible segmentation by an ordered set B =
(b1, b2 · · · bk), which means that boundaries occur at beats
b1 < b2 · · · < bk. There are two special beat positions:
beat 0 is the beginning of the audio data and beat bM is the
end of the audio data. We formulate boundary detection as
an estimation of a segmentation B′ that maximizes a fitness
function f(B) over the space of all possible segmentation,
i.e., B′ = argmaxB f(B). As will be discussed in Sec-
tion 3.4, we will find B′ by successively appending segment
boundaries to a set of W candidate segmentations {Bw}Ww=1

until beat bM is added.
The fitness f(B) incorporates three fitness measures fB ,

fD and fH , and is given as follows:

f(B) = fB(B) + λfD(B) + νfH(B), (1)

where λ > 0 and ν > 0 are the weights of each fitness. The
fitness fB(B) denotes the log-probability of each beat in B
to be the boundary given the audio signal, obtained from a
novelty curve derived from repetition and local spectral fea-
tures. It encourages boundaries to be placed where spectral
feature repeats and changes drastically. The fitness fD(B)
denotes the log-probability of the segment beat duration se-
quence. It encourages the segment beat durations to be con-
sistent with respect to each other. The fitness fH(B) denotes
the log-probability of the segmentation based on homogene-
ity of timbre within each segment. It encourages splitting of
segments whose timbre vary significantly.

For computing the fitness functions, we first extract the
beat times using [8]. For each beat b and its neighboring
half-beats, we extract 128-dimensional mel-scale log spec-
trum (MSLS) from 0 to 8 kHz, and tatum-level self-similarity
matrix (SSM), where tatum is defined as half-beat. SSM is
computed by taking the inner product of the MSLS at the
beats in concern, and at beat b, the similarity is computed for
b ± 200 beats, and the rest set to 0. The SSM is rotated so
that at every beat, the center element is the similarity to itself.
We denote the tuple of MSLS and SSM at beat b concatenated
with that at one tatum after as X(b). Each frequency bin of
MSLS is normalized to zero mean and unit variance, and the
SSM is normalized to zero mean and unit variance.

3.1. Criteria 1. Boundary fitness

For a candidate segmentation B = {b1, b2 · · · bN}, fB is
computed as follows:

fB(B) =
∑
n

log(pB(X(bn)))− log(1− pB(X(bn))). (2)

pB(X) is the posterior probability that MSLS/SSM pair X
corresponds to a music structure boundary.

This fitness function denotes the increment of the log
probability for a given segmentation compared to having no
boundary at all, assuming pB(X(bn)) is independent. To see
why, since the log probability of having no boundary at all is∑bM

b=0 log(1− pB(X(b))), the first term on the r.h.s. of Eq. 2
adds the log-probability of having a label, and the second
term undoes the log probability of having no label.

Inspired by state-of-the-art music boundary detector [2],
p(X) is modeled by a DNN, where MSLS and SSM over ra-
dius of 16 beats each goes through a convolutional layer of 16
channels with kernel size of (3 × 6) with the first axis being
the temporal axis, batch-norm and max-pooling of (1×6) and
another convolutional layer of 32 channels with kernel size
(3 × 3), with batch-norm and leaky ReLU activation. Out-
puts of the CNN for MSLS and SSM are then concatenated
and connected to a fully-connected layer of 1024 output units
with leaky ReLU activation, followed by a fully-connected
layer with 1 output unit with sigmoid activation. In contrast
to the existing work which used uniformly sampled features,
we use beat-synchronous features.

The network is trained using ADAM [9] to minimize the
cross-entropy between the output and the ground-truth.

3.2. Criteria 2. Segment duration fitness

Let Ln = bn+1 − bn be the number of beats used by segment
n. Then, we model the fitness function fD as the following:

fD(B) =

N−1∑
n

log(pD(Ln|L1···n−1)). (3)
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pD(Ln|L1···n−1) is the probability of observing a segment
duration of Ln beats, given the previous segment durations.
We call this the duration language model (LM).

There are many possibilities for the LM in addition to
existing models like unigram and bigram. This paper specif-
ically explores two more variants: LSTM and N-gram LM
(N>2). LSTM LM is a long-short term memory (LSTM
[10]) with 1024 output units, which is trained to predict
the segment beat duration Ln given past segment durations,
pD(Ln|L1···n−1). Because of the recurrent connection, it re-
members the previous segment durations. The beat duration
is expressed as a one-hot vector. The input duration, before
being fed to the LSTM is reduced to 64 dimensions by a fully-
connected network with tanh activation. The LSTM output
is converted to one-hot representation of beat duration by a
fully-connected network, with leaky ReLU activation. The
model is trained to minimize the cross-entropy loss. N-gram
LM predicts the next beat duration using a categorical distri-
bution defined for all permutations of N − 1 previous beat
durations, with Katz backoff [11]. The LM is trained using
maximum likelihood estimation and smoothed by assigning
log-likelihood of −100 for an unseen sequence.

In either case, we treat two edge cases differently: the be-
ginning and the end. The first structural segment could occur
at any beat b because arbitrary silence may precede the be-
ginning of the song. Thus, we assume the beat position of
the initial segment boundary is exponentially distributed with
scale parameter α:

fd((0, b)) = −αb. (4)

Similarly, the last beat bM does not necessarily have a mean-
ingful structural boundary. Thus, for the end we marginalize
over possible ways of segmenting past the end and let:

fD((b1 · · · bk, bM ))

= fD((b1 · · · bk)) + log
( ∑

b′>bM

pD(b′ − bk|L1···k)
)
, (5)

where b′ in the summation is evaluated up to some reasonable
value (we evaluate up to bM + 64 beats).

3.3. Criteria 3. Timbre homogeneity fitness

To encourage segments with similar timbre to be clustered in
one segment, we evaluate the inter-segment variance of the
MSLS. Let S(b) ∈ RN be the MSLS at beat b smoothed
over the frequency axis by a Hanning window. We assume
that MSLS inside each segment is Normally distributed with
a spherical variance. Then, we set the fitness function propor-
tional to the maximum log-likelihood1:

fH(B = (b1 · · · bk)) = −
k−1∑
i=1

N∑
n=1

Var({Sn(b)}bi+1−1
b=bi

). (6)

1Strictly speaking, the variance term needs to be weighted by the segment
beat duration, but we found that the method performs better without it.

This fitness decreases when there is a high inter-segment vari-
ance, so it encourages more segments to be generated.

3.4. Segmentation estimation using beam-search

Finding the best B′ that maximizes the fitness function is in-
feasible since it requires evaluating the fitness over all possi-
ble segmentation. Therefore, we use beam-search to greed-
ily find the boundaries. Specifically, we start with some W
candidate segmentations {Bw}Ww=1, each initialized to an or-
dered list containing the first beat as the segment boundary,
i.e., Bw = (0). Then, we iterate the following until every
candidate segmentation ends with bM , the end of the song:

1. For each candidate segmentation Bw = (b1,w, · · · bk,w),
append all possible beat segments past bk,w. In other
words, for eachw, generate Bw,b′ = (b1,w, · · · bk,w, b′)
for b′ ∈ [bk,w + 1, bM ].

2. For each Bw,b′ , evaluate f(Bw,b′). For computing fD
term, if Bw,b′ is of form (0, b′), then use Eq. (4); if
b′ = bM , then use Eq. (5); otherwise, use Eq. (3).

3. Retain W segmentations with the best score f(Bw,b′),
and set each to Bw.

Finally, the best segmentation result is used as the estimate.

4. EVALUATION

For the training dataset, the duration LM was trained on 7700
MIDI files with music structure annotation. The DNN bound-
ary detector was trained on synthesized versions of the 7700
MIDI files and another dataset of 410 Japanese popular songs.

For the validation dataset, we used the first album of the
Beatles with the Isophonics ground-truth label [12].

For the test dataset, we used three different datasets. First,
we used 164 songs from the Beatles and corresponding Iso-
phonics ground-truth label, excluding the first album which
is used for validation (the result with the first album was
not very different). Second, we used the 100 songs from
the RWC Popular Music Database [13], and its ground-truth
structural labels [14]. Third, we used 468 songs from the
Internet Archive data from SALAMI 2.0 dataset [15]. We did
not use other songs from SALAMI that are based on com-
mercial songs. The internet archive dataset contains many
degraded-quality audio signals, making segmentation and
beat detection more difficult compared to the other datasets
and other songs in the full SALAMI.

To evaluate the methods, mir eval [16] was used to com-
pute the boundary segmentation performance, including pre-
cision, recall, F1-score and the more perceptually-relevant
F0.58-score [17]. The estimated boundary was treated as cor-
rect if it was within 0.5 seconds of a ground-truth boundary
label. We omitted the ends of the song from the structural
boundary, as they artificially improve the performance.
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Table 1: F-measure for different duration LM.

Language Model F1 λ ν
None 0.37 0.00 0.01
1-gram 0.37 0.03 0.12
2-gram 0.37 0.02 0.02
3-gram 0.47 0.20 0.40
4-gram 0.46 0.26 0.08
5-gram 0.44 0.50 0.77
LSTM 0.49 0.40 0.62

In the following experiments, the beam width W was set
to 20. λ and ν were optimized with Bayesian optimization
[18], as to maximize the F1-score on the validation data.

4.1. Experiment 1 - choice of the duration LM

We compared the performance of different boundary duration
LMs. To this end, we prepared and trained boundary detectors
with (1) no duration LM, (2) N-gram LM (N = 1 to 5), (3)
LSTM LM. Each boundary detector was tested on the Beatles
dataset, minus the validation dataset.

Table 1 shows the F1-score of boundary detection, evalu-
ated over different language models, along with the best λ and
ν found for each LM. The improvement of F1-score with an
expressive LM demonstrates its effectiveness for improving
the segmentation quality. For N-gram LM, the performance
boosts after 3-gram. This shows that the benefit of LM comes
only with more expressive LMs. LSTM outperforms N-gram
because it is capable of handling longer contexts.

The general trend of the weights λ and ν shows that (1)
expressive LM is informative, since λ, the importance of du-
ration fitness, increases with an expressive LM, and (2) the
two fitnesses encourage different kinds of segmentation and
are both important for performance, since ν and λ increase
together, instead of one dominating the other.

4.2. Experiment 2 - boundary detection

We compared the performance of different boundary de-
tectors, and tested them on Beatles, RWC-Popular and
SALAMI dataset. For the baseline methods, we prepared
(1) the music structure analysis framework [19] with its de-
fault setting (method SF [20] with PCP features, denoted
”MSAF(PCP/CF)”) 2, (2) spectral clustering [21] (denoted
”Spec. Cluster”3), (3) the peak-picking scheme from [2] us-
ing the posterior probability of our DNN boundary detector,
with the peak-picking threshold optimized on the validation
dataset (denoted ”DNN Peak-pick”).

2Obtained from https://github.com/urinieto/msaf commit
9dbb57d

3Obtained from https://github.com/bmcfee/laplacian_
segmentation commit 94a2c34

Table 2: Comparison of different detection methods.

Method Precision Recall F1 F0.58

MSAF(PCP/SF) 0.206 0.145 0.165 0.181
Spec. Cluster 0.240 0.336 0.243 0.235
DNN Peak-pick 0.429 0.511 0.458 0.441
Proposed 0.608 0.447 0.503 0.545

(a) RWC Popular Music Database.

Method Precision Recall F1 F0.58

MSAF(PCP/SF) 0.235 0.207 0.211 0.220
Spec. Cluster 0.154 0.424 0.203 0.173
DNN Peak-pick 0.368 0.542 0.427 0.394
Proposed 0.507 0.520 0.492 0.495

(b) Beatles dataset (w/o the validation data).

Method Precision Recall F1 F0.58

MSAF(PCP/SF) 0.162 0.168 0.157 0.158
Spec. Cluster 0.154 0.232 0.170 0.159
DNN Peak-pick 0.217 0.386 0.267 0.239
Proposed 0.301 0.347 0.306 0.300

(c) SALAMI dataset (Internet Archives).

Table 2 shows the results. It shows that incorporating the
consistency of segmentation improves the segmentation qual-
ity significantly. Compared to the DNN peak-picking base-
line, our method boosts by about 5 points the F1 score, 10
points in the perceptually-relevant F0.58-score, both thanks to
the significantly improved precision. The performance of the
DNN peak-picking baseline is comparable but slightly behind
the values reported in the literature; we speculate the discrep-
ancy comes from fewer audio training data.

The results also show that (1) the incorporation of dura-
tion constraint serves not so much on introducing new cor-
rect labels but removing false positives, and (2) the primary
qualitative improvement comes from duration LM instead of
timbre homogeneity. To elaborate, since timbral homogeneity
serves only to introduce more segments, it tends to increase
the recall or decrease precision; therefore, the improved pre-
cision can be explained only by the duration fitness.

In summary, DNN boundary detector is already quite
good at finding the boundary candidates, so adding more
schemes to detect additional boundaries helps only marginally;
on the other hand, false positives that the DNN detector emits
can be filtered out by the duration LM.

5. CONCLUSION

We have presented a music boundary detection method that
simultaneous takes into account various measures of fitness
of segmentation. Evaluation showed improved boundary de-
tection quality, mostly by improving the precision. Future
work includes models for improving the segmentation recall.
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