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ABSTRACT

We describe a novel pipeline to automatically discover
hierarchies of repeated sections in musical audio. The pro-
posed method uses similarity network fusion (SNF) to com-
bine different frame-level features into clean affinity matri-
ces, which are then used as input to spectral clustering. While
prior spectral clustering approaches to music structure analy-
sis have pre-processed affinity matrices with heuristics specif-
ically designed for this task, we show that the SNF approach
directly yields segmentations which agree better with human
annotators, as measured by the “L-measure” metric for hier-
archical annotations. Furthermore, the SNF approach imme-
diately supports arbitrarily many input features, allowing us
to simultaneously discover structure encoded in timbral, har-
monic, and rhythmic representations without any changes to
the base algorithm.

Index Terms— music structure analysis, similarity net-
work fusion, spectral clustering

1. INTRODUCTION

Music has structure along many axes, such as timbre, melody,
harmony, rhythm, etc. Since most methods for automatic mu-
sic structure segmentation are tuned to find a particular kind
of structure, extending them support other types is usually
quite difficult. Hence, we would like to explore how to lever-
age multiple representations of the same audio to efficiently
discover musical structure.

1.1. Our contributions

In this work, we show how to use similarity network fusion
([1, 2], Section 2.1) for musical structure analysis. In particu-
lar, our proposed method integrates disparate representations
of timbre, harmony, and rhythm (Section 2.3) to produce a
unified structure representation. We then couple this method
with spectral clustering (Section 2.1) to produce multi-level
structure analyses, and we evaluate the system for its ability
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to recover annotated structure in a diverse music collection
(Section 3). Our evaluation includes multiple reference anno-
tations for each track, accounting for subjectivity and diver-
sity of opinion. Overall, we find that our proposed method
is more robust than prior work, and gets closer to human-
level agreement than prior work. L-recall (Section 3.2.1) is
particularly strong with our technique, with a mean of 0.658
compared to the human inter-annotator recall mean of 0.664.

1.2. Related work

Similarity network fusion (SNF) is a joint random walk tech-
nique that was devised to leverage the strengths of differ-
ent hand-designed similarity measures for shape classifica-
tion 2D contours in images [1]. It has since been used in
such tasks as cancer phenotype discrimination [2], image re-
trieval [3], and drug taxonomy [3]. SNF was introduced to
the music information retrieval community by the authors of
[4] to leverage different cross-similarity alignment scores in
automatic cover song identification. As in the original appli-
cation, they use SNF at the object (song) level. By contrast, it
was shown in [5] that using SNF at the feature level (i.e., beat-
synchronous HPCP and MFCC) can improve cross-similarity
matrices between pairs of covers without the need for a net-
work of song-level similarity measures. A precursor to our
work used SNF on frame-level features within a song to im-
prove self-similarity matrices for visualization [6].

As for music structure analysis, the present work builds
directly upon the Laplacian spectral decomposition (LSD)
method [7]. This method operates by carefully constructing
a graph which encodes short-term timbral continuity along
with long-term harmonic repetition, and then partitions the
graph at multiple scales to recover multi-level segmentations.
While this can be effective, the graph construction depends
heavily upon the choice of input features, and the resulting
method can be somewhat brittle in practice. The method we
propose here, in contrast, supports the fusion of arbitrarily
many input representations, which facilitates the discovery
of both long- and short-range structure along many different
musical dimensions, including timbre, harmony, and rhythm.
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Fig. 1. Applying SNF on the song “Tango Apasionado” by
Astor Piazzolla (936 in the SALAMI dataset [8]). Affinity
matrices are shown before and after fusion.

2. METHODS

2.1. Fusion

We now provide details of frame-level similarity network fu-
sion. Given F sets of features which are each computed at the
same N time intervals each corresponding to a stack-delayed
sequence of frames (Section 2.3), we first compute the corre-
sponding F N×N self-similarity matrices (SSMs) {Df}Ff=1

via feature specific distances (Section 2.3). Then, we convert
each SSM to an “affinity matrix” W f
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where κ the number of nearest neighbors which is fixed a pri-
ori (we will explore the effect of κ in Section 3.3), and Nf

κ (i)
are the indices of the κ nearest neighbors of i, as measured by
Df . SNF then defines two additional normalized versions P f

and Sf of each affinity matrix as follows
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In other words, each P f can be interpreted as a doubly-
stochastic transition probability matrix associated toW f , and
Sf is the nearest neighbor thresholded version of P f . Given
these matrices, SNF proceeds with the following iterations

P ft = Sf ×

(∑
k 6=f P

k
t−1

F − 1

)
× (Sf )T (4)

Fig. 2. Applying spectral clustering to the affinity matrices in
Figure 1. Meet matrices [9] are shown before and after fusion,
in addition to meet matrices from human annotators.

for T iterations t = 1, 2, . . . , T , cycling through f =
1, 2, . . . , F at each iteration, and with P f1 = P f and Sf fixed.
The final fused affinity is then taken to be 1

F

∑F
f=1(P fT ). In-

tuitively, each iteration for feature type f performs a random
walk using neighbors of f but probabilities from the other
feature types averaged together, thereby fusing information
from all features. These iterations have been shown to con-
verge quickly in practice [1, 2], and we find that T = 10
suffices.

2.2. Spectral clustering

Once we have clean affinity matrices, we can extract seg-
ments from them via spectral clustering [10]. Spectral clus-
tering refers to a family of methods for partitioning graphs
based on the characteristics of the eigenvector decomposition
of their Laplacian matrix. In this work, we use the random-
walk normalized Laplacian formulation. Given a symmetric
graph affinity matrix A ∈ RN×N+ , the normalized Laplacian
is defined as

L := I −∆−1A, (5)

where ∆ = diag(A1) is the diagonal degree matrix of A.
L is positive semi-definite, and the eigenvectors asso-

ciated with the smallest eigenvalues encode the large-scale
structure of the graph. Let L have eigenvector decompo-
sition L =

∑
i λiviv

T
i with λi in ascending order. Spec-

tral clustering proceeds by using the first k eigenvectors as

202



Vk = [v0, v1, . . . , vk−1] ∈ RN×k as a k-dimensional feature
representation of the nodes of the graph, which is then given
as input to a k-means clustering algorithm (we use sklearn
for k-means [11]). The resulting cluster assignments provide
a partition of the nodes of the graph into k disjoint subsets.

This general idea was previously applied to multi-level
music segmentation [7] by iterating over multiple values of k:
small values of k produce few segment types, though poten-
tially many individual segments of each type. For each value
of k, segment boundaries are inferred by finding the nodes
(n, n + 1) (corresponding to time or beat indices) which re-
ceive distinct cluster assignments. In this work, we create a
hierarchy of segment labels by varying k from 2 to 10.

Figure 2 shows an example of “meet matrices” [9] on the
results of spectral clustering on the affinity matrices from Fig-
ure 1. Darker pixels in these matrices correspond to regions
which are more consistently labeled across different levels in
the label hierarchy. As in [12] and [7], we observe that tight
diagonals in the SSMs are expanded as blocks in the annota-
tions. Hence, since SNF enhances diagonals in this example
(Figure 1), it leads to cleaner block structures.

2.3. Features

We evaluate the proposed fusion clustering method using four
different audio representations, meant to encode various as-
pects of timbre, harmony, and rhythm. Features are computed
with librosa 0.6.2 [13], and sampled at a framerate of 23.2 ms.

As a coarse timbre descriptor, we use 20 mel frequency
cepstral coefficients (MFCCs), derived from a 128-dimensional
mel spectrum covering 0–11025Hz. We apply an exponential
lifter x̂c = (c0.6)xc, to each coefficient xc, c = 1, 2, . . . , 20.

To encode harmonic content, we use chroma derived from
a constant-Q spectrogram of 36 bins per octave. Chroma fea-
tures capture harmonic content by aggregating pitch class
energy across octaves, and can therefore be sensitive to over-
tones and transients. To capture longer-term harmonic sta-
bility, we introduce a second set of features derived from
the CREMA chord estimation model [14]. This model uses
convolutional-recurrent neural network for large-vocabulary
chord recognition, and as a byproduct, produces conditional
likelihood of each pitch class being active at each frame.
While these features can be interpreted as chroma-like, the
recurrent aspect of the model tends to enforce local consis-
tency while suppressing transients and passing tones.1

Finally, rhythmic content is encoded by a tempogram de-
rived from the local auto-correlation of the onset strength en-
velope [15]. The onset strength envelope is calculated with
a SuperFlux [16] local max filter of 5 bins on the previous
frame, which suppresses vibrato while preserving attack tran-
sients [16]. Tempogram auto-correlations are estimated over
a window of 384 frames (∼ 9 seconds) and peak-normalized.

1CREMA features are produced at a framerate of 44100/4096=10.7Hz,
and up-sampled by nearest-neighbor interpolation.

After the initial computation, all features are averaged
within non-overlapping chunks of 10 windows, slowing the
framerate down to 0.232 seconds. Unlike other works, we
keep this constant across all songs, rather than using beat-
synchronous sampling, which is can be brittle on certain gen-
res. Next, to promote temporal continuity when comparing
windows, we stack delay overlapping blocks of 20 windows
for each feature, as in [17]. Hence, each block spans roughly
4.64 seconds. We then compute Euclidean SSMs between the
MFCC and tempogram blocks, and we compute SSMs based
on the cosine distance between the Chroma and CREMA
blocks. For a marginal improvement, we can enhance tem-
poral continuity in a manner similar to [7] by performing a
9-tap median filter on each diagonal of the affinity matrices
for each feature before applying SNF.

3. EVALUATION

Below, we describe the data and summary statistics we use.
As a baseline algorithm, we compare to LSD [7] as imple-
mented in MSAF [18].

3.1. Data

We use the SALAMI dataset [8] with multilevel annotation
corrections [9] to quantiatively evaluate our algorithm. This
dataset consists of 1,359 tracks across a wide variety of gen-
res which each have at least one annotator who has marked
“coarse” and “fine” segments. In our work, we focus on a
subset of 884 songs which have two distinct annotators, so
that we can compare to a human-level annotator agreement.

3.2. Evaluation criteria

Numerous methods have been proposed to evaluate the ac-
curacy of musical structure estimation systems. For most
choices of evaluation criteria (e.g., segment boundary accu-
racy or segment labeling), there are two critical sources of
variation which must be accounted for: ambiguity in struc-
tural depth, and subjectivity across reference annotators.2

3.2.1. L-measures for hierarchical structure

The L-measure [9] was proposed as a generalization of pair-
wise frame classification [20] to support comparison between
multi-level time-series segmentations, which we briefly sum-
marize here. Multi-level segmentations are assumed to be
provided as a sequence of collections of labeled intervalsH =
(Π0,Π1, . . . ), where each Πi partitions the input signal in
time, and the sequence is ordered from coarse to fine. Typ-
ically, Π0 is a single interval which spans the entirety of the
input, and subsequent Πi provide refinements into collections
of smaller segments.

2All evaluations are implemented using mir eval 0.5 [19]
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If Πi(t) denotes the label of the interval containing time
t at the ith level of the segmentation, then a similarity be-
tween instants (t, u) can be derived from the maximum i such
that Πi(t) = Πi(u). This pairwise similarity function gives
rise to a partial ordering over pairs of time instants, which
can be summarized by the set of all triples (t, u, v) such that
(t, u) are more similar than (t, v). Given two multi-level seg-
mentations HR (the reference) and HE (the estimate), the
L-precision (L-recall) is defined as the fraction of such triples
in the estimate (reference) also found in the reference (esti-
mate). The L-measure is defined as the harmonic mean of
L-precision and L-recall.

As demonstrated in prior work, the L-measures facilitate
holistic comparison between multi-level segmentations of
differing depths, and are robust to level-alignment errors [9].
These properties make them well-suited to evaluating the
ability of the proposed fusion method to capture multiple
forms of structure in music. Note that because the estima-
tors under comparison in this work all produce annotations
of greater depth than the reference annotations—which all
have two non-trivial levels—the precision scores may not be
reliable. We therefore focus our evaluation on L-recall, which
measures how much structure in the reference annotation was
identified in the estimate. However, for completeness, we
provide a full report of L-precision, L-recall, and L-measure.

3.2.2. Inter-annotator agreement comparison

Most evaluations of music structure analysis systems assume
a single ground truth reference annotation for each track,
compare the system’s estimate to that reference, and sum-
marize the distribution of evaluation scores over all tracks,
e.g., by reporting the mean score. However, recent work has
shown that multiple annotators often exhibit divergence of
interpretation of musical structure, and this variation should
be taken into account when evaluating systems.

We follow the design of [9], and compare the distributions
of L-measures when comparing an estimator to multiple ref-
erence annotations to the distribution of scores arising from
comparing the annotators to each other. Using the subset of
the SALAMI collection for which we have multiple reference
annotations (each containing multi-level segmentations), we
compute the L-measure scores for each pair of annotations
for each track, producing a sample of scores pa. For each es-
timator e, we then compare each estimated structure to all an-
notations, which results in a second sample of scores pe. The
collections pa and pe are then compared using the two-sample
Kolmogorov-Smirnov test statistic (K), which measures the
maximum absolute difference between their (discrete) cumu-
lative distribution functions: small values indicate similar dis-
tributions. This comparison measures the performance of the
estimator relative to inter-annotator disagreement. For com-
pleteness, we also report the mean L-measure scores (across
all tracks and annotators) to provide an absolute measure.

Fig. 3. Distributions of L-precision, L-recall, and L-measure
for inter-annotator agreement, the spectral clustering tech-
nique of [7], and our fusion result. The Komolgorov-
Smirinov statistic and mean score are shown in the legends.

µ(P) K(P) µ(R) K(R) µ(L) K(L)

Inter-Anno 0.664 — 0.664 — 0.654 —

MFCCs 0.371 0.663 0.295 0.617 0.283 0.713
Chromas 0.320 0.767 0.287 0.717 0.271 0.792
Tempogram 0.337 0.768 0.464 0.476 0.382 0.678
CREMA 0.392 0.668 0.529 0.342 0.441 0.558
Fused MFC/Chr 0.422 0.601 0.612 0.163 0.491 0.465
Fused Tgr/CRE 0.388 0.670 0.631 0.119 0.473 0.501
Fused κ = 3 0.447 0.558 0.658 0.074 0.525 0.388
Fused κ = 10 0.424 0.606 0.623 0.167 0.498 0.445
LSD[7] 0.406 0.661 0.606 0.146 0.473 0.501

Table 1. The means µ and K-scores of L-precision (P), L-
recall (R), and L-measures (L) for different segmentations.

3.3. Results

Figure 3 shows probability density functions for L-precision,
L-recall, and L-measure for our technique with a hierarchy of
2–10 clusters and κ = 3. The distributions for our fusion are
closer to human level agreement than those of LSD [7], and
they also correct a cluster of failure cases present in [7]. Ta-
ble 3.3 shows the mean (higher is better) andK-scores (lower
is better) of precision, recall, and L-measure for individual
features and various combinations of fusion (MFCC/Chroma,
Tempogram/CREMA, and all). In all cases, fusion improves
over individual features, and fusing all features performs the
best across all statistics. We also show that using a smaller
number of neighbors κ for the spatial bandwidth is advanta-
geous, as it tends to promote diagonal regions in the fused
affinity matrices without connecting dissimilar blocks.

4. DISCUSSION / CONCLUSION

This work has shown promise of SNF + spectral clustering for
hierarchical structure annotations, and we believe there will
be other applications of feature-level SNF on affinity matrices
in MIR. There is also room for general theoretical develop-
ment of the interplay between SNF and the graph Laplacian.
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