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ABSTRACT

The multi-instrument transcription task refers to joint
recognition of instrument and pitch of every event in poly-
phonic music signals generated by one or more classes of
music instruments. In this paper, we leverage multi-object
semantic segmentation techniques to solve this problem. We
design a time-frequency representation, which has multiple
channels to jointly represent the harmonic structure and pitch
saliency of a pitch activation. The transcription task there-
fore becomes a pixel-wise multi-task classification problem
including pitch activity detection and instrument recognition.
Experiments on both single- and multi-instrument data verify
the competitiveness of the proposed method.

Index Terms— Automatic music transcription, multip-
itch estimation, semantic segmentation.

1. INTRODUCTION

Deep learning techniques have brought great success in im-
age semantic segmentation in recent years, by providing full-
fledged solutions in segmenting multiple classes of objects,
where each class of object may have multiple instances on
a single image [1]. Such an achievement is accumulated by
a number of inventions, such as the fully convolutional net-
works (FCN) [2], the U-net structure [3], pooling of dilated
convolution [4], novel loss function [5], to name but a few. It
would be intriguing to see if these novel methods can lever-
age the analysis of music content. In particular, we consider
the semantic segmentation on the time-frequency image of a
polyphonic signal generated by multiple musical instruments.
Here, an instrument is equivalent to a class of object, and each
class typically has multiple instances (i.e., pitch activation) on
the time-frequency plane. This problem is part of the auto-
matic music transcription (AMT) problem, and its goal is to
jointly transcribe pitch and instrument from audio. We refer
to this task as multi-instrument transcription in this paper.

Instrument-level information has been widely discussed
in AMT. For example, previous studies including non-
negative matrix factorization (NMF) [6] and probabilistic
latent component analysis (PLCA) [7, 8] adopt instrument-
wise templates to better fit the spectral patterns lying in the
signals. This implicitly allows multi-instrument transcription.

However, most studies took such instrument labels merely for
improving the performance of multi-pitch estimation (MPE),
and the benchmarks made simultaneously on both instrument
recognition and MPE are few. Multi-instrument transcription
still remains an rarely investigated problem.

Recently, deep learning-based semantic segmentation
models are catching increasing attention in various music sig-
nal processing problems, such as singing voice separation [9],
MPE [10], and melody extraction [11]. Furthermore, the high
flexibility of deep learning models also allows us to build a
multi-task learning (MTL) model with less effort. For exam-
ple, [12] proposed a piano transcription model to transcribe
note onset, offset, pitch, and velocity at the same time. [13]
also considered an MTL notwork for MPE, melody, vocal,
and bass transcription. Novel loss functions such as the focal
loss is also applied for melody extraction to emphasize pitch
objects that are typically thin and are hard to capture using
conventional loss function [11].

To learn multiple attributes from music, the input data rep-
resentation is also critical for semantic segmentation models.
[10] proposed the harmonic constant-Q transform (HCQT),
which is a multi-channel feature allowing the harmonic se-
quence of a pitch to be ‘visible’ on one single pixel at the
same time. This is analogue to the RGB channels in col-
ored images. Similarly, [11] paralleled the spectral and tem-
poral characteristics of a pitch object jointly, based on the
combined frequency and periodicity (CFP) approach. Ex-
periments have also shown that the performance can bene-
fit from such multi-view data representations. In this work,
we consider combining the HCQT and CFP methods with
semantic segmentation modeling for multi-instrument tran-
scription. Experiments show that, first, the proposed seg-
mentation model achieves state-of-the-art performance in the
MPE problem of piano music, and second, the proposed data
representation achieves better performance than the baseline
method in multi-instrument transcription.

2. METHOD

2.1. Data representation

The data representation adopted in this work is derived from
two previous studies: the CFP representation in [14] and the
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Harmonic Constant-Q Transform (HCQT) proposed in [10].
According to [14], leveraging multiple features in both the
time and frequency domains can lead to better performance
in AMT. In addition, to better capture harmonic information,
we also incorporate the idea of stacking harmonic information
along the channel axis as in [10].

Let X ∈ R2F×T be the magnitude part of the short-time
Fourier transform (STFT), where F is the dimension of the
spectrum in the positive frequency range, and T is the dimen-
sion of time. Consider the following two data representations:

Zf [k, n] := Qf |WfX|γf , (1)

Zq[k, n] := Qq

∣∣WqF
−1Zf

∣∣γq , (2)

where Zf , Zq ∈ RF×T , k and n are the frequency and time
index respectively, F is the DFT matrix, Wf and Wt are
high-pass filters to discard low-varying parts [14], and the
element-wise power-scaled nonlinear activation function | · |γ
is defined as: |x|γ := |max(0, x)|γ . We follow [15] to set the
parameters (γf , γq) = (0.24, 0.6). Qf , Qq ∈ RF×2F are two
triangular filterbanks: they respectively map a feature from
the frequency or time domain to the positive log-frequency
domain. Both filterbanks have 352 triangular filters, with 48
semitones per octave, ranging from 27.5 Hz (A0) to 4487 Hz
(C8). Therefore, we have F = 352, and T is dependent on
the length of input, In brief, Zf represents a power-scaled
spectrogram showing the fundamental frequencies and their
harmonics in a signal, and Zq represents a generalized cep-
strum showing the fundamental frequencies and their sub-
harmonics [16, 17]. [14, 16, 17] pointed out that combining
Zf and Zq for the MPE models can give significantly better
MPE performance than using the spectrogram feature.

Next, we consider the harmonic information. One key
idea of the HCQT is the multi-channel data representation
combining a pre-computed time-frequency representation and
its pitch-shifted version such that the harmonic peaks of a
pitched component are aligned to the same pixel [10]. The
main purpose of doing so is to make a local convolutional ker-
nel cover the global pitch profile (i.e., the whole harmonic pat-
tern) of a component. In this paper, we extend this idea to both
the power spectrogram and the generalized cepstrum. Con-
sider the mth harmonic frequency mf0 of a fundamental fre-
quency f0. According to equal temperament, the pitch num-
ber of mf0 is η(m) := round(12 log2m) semitones higher
than f0. For example, the 2nd, 3rd, and 4th harmonics of
f0 are 12, 19, and 24 semitones higher than f0 respectively.
Similarly, the 2nd, 3rd, and 4th sub-harmonics are lower than
f0 by 12, 19, and 24 semitones. We therefore consider the
following two data representations:

Z
(m)
f [k, n] := Zf [k + η (m) · δ, n] (3)

Z(m)
q [k, n] := Zq [k − η (m) · δ, n] (4)

where δ is the number of bins per semitone. Notice that
Z

(1)
f = Zf and Z

(1)
q = Zq . In this work, we consider Z(m)

f

Fig. 1. The conceptual diagram of the proposed system.

and Z
(m)
q form = 1, 2, · · · , 6. We align these representations

along the channel axis, which therefore form a 12-channel
representation ZHCFP := [Z

(1:m)
f ,Z

(1:m)
q ]. This will be re-

ferred to as the HCFP representation in the following sections.
In this multi-channel data representation, every pixel contains
not only the spectral component but also the harmonic and
sub-harmonic peaks. Since the frequency scale is 48 semi-
tones per octave, so we have δ = 4. Besides HCFP, in this
paper, we also discuss the CFP representation without high-
order harmonics (i.e., m = 1), namely ZCFP := [Z

(1)
f ,Z

(1)
q ].

The input audio recordings are mono-channel and are re-
sampled to 16 kHz. The STFT is computed with a Blackman-
Harris window which size is 0.128 second, namely 2,048
samples. The hop size of STFT is 0.02 second.

2.2. Model

Fig. 1 illustrates a schematic diagram of the proposed multi-
instrument transcription system. The proposed model is based
on our prior work used in [11], but with some modification
to fit our task requirement. This model is originally based
on the DeepLabV3 and its improved version, DeepLabV3+
[4], both which are fully convolution neural networks with
an encoder-decoder architecture. The original model output
was only the binary prediction on one channel, which is in a
single-task mode. To predict multiple instrument activation,
we extend the output to (N + 1) channels to recognize N
classes of instrument plus one non-instrument channel. That
means, each channel represents one of the transcription of one
class instrument. This allows the model to predict multiple
instruments at the same time. The output value of each pixel
is between 0 and 1, which represents whether the pitch at that
moment is off or on.

The input of the model is the 2m-channel data representa-
tion ZHCFP ∈ R2m×F×T . The model input is then fed through
a sequence of encoder blocks, each of which is constructed
by a convolution, a ReLU function, a stride convolution and
a skip connection [11]. The decoder block is constructed by
the stack of convolution and transpose convolution for better
resolution in the decoded image [18]. We also adopt the U-net
structure to our model, in which the output from the encoder
layers and the corresponding decoder layers are concatenated.
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We use padding for each convolution such that the output of
each block has the same dimension F × T .

One important feature of the model is the use of atrous
spatial pyramid pooling (AASP) in between the encoding and
decoding processes [19]. It introduces convolution operations
with several dilation sizes, and pooling them together to cap-
ture objects in various scales. We adopt the focal loss [5] as
the loss function to solve the class imbalance problem. Since
most of the pixels in the output are silence (i.e., no activation
at that time-frequency position), the model would tend to pre-
dict all the pixels to be silence when using conventional loss
function such as binary cross entropy. The focal loss provides
a weighting factor for balancing the importance between ac-
tive and silence examples, and such a loss function has been
found useful in vocal melody extraction [11].

3. EXPERIMENTS

3.1. Data

We evaluate our proposed methods on two datasets, MAPS
[20] and MusicNet [21]. The MAPS dataset is one of the
most widely used dataset in AMT. The dataset contains 270
annotated piano solo pieces generated from nine different pi-
ano sources, two of which are real-world and seven of which
are synthesized pianos. Each source has 30 pieces. The Mu-
sicNet dataset contains totally 330 pieces of classical music
recordings in solo or chamber music. It contains 11 kinds of
instruments, including piano, harpsichord, violin, viola, cello,
contrabass, horn, oboe, bassoon, clarinet, and flute. All of the
pitch annotations in this dataset have instrument labels.

We follow the Configuration II [22] to split the MAPS
dataset into the training and testing parts: 210 pieces from the
seven synthesized piano are for training (180 pieces) and val-
idation (30 pieces), and the remaining 60 pieces from the real
piano, ENSTDkAm and ENSTDkCl, are set aside for testing.
The MusicNet dataset is split into training and testing subsets
according to the default setting provided by the authors of the
dataset: 320 pieces are the training set and the remaining 10
pieces are the testing set. The IDs of the audio files contained
in the test set are: 1759, 1819, 2106, 2191, 2298, 2303, 2382,
2416, 2556, and 2628.

3.2. Experimental settings

We consider two frame-level MPE evaluation schemes: 1)
conventional MPE (denoted as C-MPE), which only counts
the accuracy of pitch, as discussed in the previous studies
[7, 10, 17], 2) multi-instrument MPE (denoted as MI-MPE),
which takes a prediction as a true positive only when both
the pitch and the instrument class are correctly predicted. For
data representation, we compare CFP to HCFP, the latter is
expected more suitable for MI-MPE as it incorporates har-
monic information. To verify the performance of the pro-
posed semantic segmentation model and the HCFP feature on

both C-MPE and MI-MPE tasks, We perform the following
two experiments:

• First, we take the CFP representation as the input of the
proposed model, and evaluate C-MPE performance on
the MAPS and MusicNet dataset. Here the instrument
information of the MusicNet dataset is not used; that
means, the model output has only two channels repre-
senting no matter an event is activated or inactivated.

• Second, we take the HCFP representation as the model
input and evaluate MI-MPE performance on the Music-
Net dataset. Since the MusicNet dataset has 11 instru-
ments, the model output has 12 channels for all instru-
ment classes and one non-instrument class.

The metrics we used for evaluation are precision, recall,
and F-measure, which can be computed by counting the num-
ber of true positive (TP), false positive (FP), and false negative
(FN) over all frames in the testing data: P = TP/(TP + FP),
R = TP/(TP + FN), and F = 2PR/(P + R). We use the
mir eval.multipitch function with default parameter
setting in the mir eval library to evaluate all experiments.
For the evaluation on MI-MPE, we compute the instrument-
wise F-measure for each individual output channel. Since a
music piece does not have all the 11 instruments, we compute
the F-measures only for the instruments that really appear in
that piece. The resulting P, R, F are the average of these re-
sults of all pieces over the full dataset.

Finally, we need a process to tune the threshold on the
model output to obtain the final transcription result. The op-
timal threshold for each output channel is obtained by a grid
search from 0 to 1 over the validation set. The target of this
search is to get the highest F-measure in the validation set.
The test data are not used in such a threshold tuning process.

All experiments are run on an Ubuntu 16.04 computer
with i7-7700 CPU and a 64G RAM. We also use an GTX
1080 Ti GPU card to accelerate our training. The model is im-
plemented using the Keras library with TensorFlow backend.
The parameters are updated with stochastic gradient descent
(SGD) using the ADAM optimizer. The initial learning rate
is set to 0.001. For each training epoch, we fix the number
of updating step to 6,000 mini-batches, and every mini-batch
has 12 ramdomly selected input segments. Each segment has
128 frames, equivalent to 2.56 seconds. Our source code will
be announced online for reproducibility. 1

3.3. Results

Table 1 lists the C-MPE results on the two experimental
datasets. We compare our results to the recently-published
state-of-the-art methods: for the MAPS dataset, we list the
result of the Onset and Frame model [12] trained with the

1https://github.com/BreezeWhite/Music-Transcription-with-Semantic-
Segmentation
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Dataset Method P R F1

MAPS [23] 92.86 78.46 84.91
Proposed (ZCFP) 87.48 86.29 86.73

MusicNet
[21] 68.71 77.30 72.75

Proposed (ZCFP) 69.34 79.29 73.70
Proposed (ZHCFP) 68.98 78.85 73.20

Table 1. Results (in %) of frame-level C-MPE.

CFP (ZCFP) HCFP (ZHCFP)
P R F1 P R F1

pf 53.39 64.98 58.59 54.25 78.36 63.17
vn 37.18 70.84 48.20 39.84 65.14 47.28
va 26.13 46.00 32.90 27.04 42.42 32.98
vc 35.38 48.03 40.67 30.19 70.29 41.72
hn 64.66 64.12 64.34 52.19 52.73 52.46
bn 26.49 43.74 32.98 27.41 70.87 39.52
cl 40.62 77.96 53.41 42.45 77.89 54.95

Table 2. Results (in %) of MI-MPE. Instrument labels are: pf
= piano, vn = violin, va = viola, vc = cello, hn = horn, bn =
bassoon, and cl = cello.

MAESTRO dataset [23]; and for MusicNet we list the result
of a novel CNN-based network proposed in [21]. Since [21]
only reported the results on the first 90 seconds of three test-
ing pieces, we take a re-implemented code and obtain the
results on all the test data after confirming its performance on
the setting used in [21] without data augmentation.2

The F-measure of our proposed model on the MAPS
dataset achieves 86.73%, which outperforms [23] by 1.8%.
To our best knowledge, this is the recorded high performance
of C-MPE on the MAPS dataset under Configuration II. For
MusicNet, the F-measure of the proposed method also out-
performs the state-of-the-art method by 1%. The proposed
semantic segmentation model together with the CFP feature
is shown highly competitive in terms of C-MPE.

Fig. 2 illustrates two selected transcription results on
MAPS (a piano solo) and MusicNet (a string quartet) using
ZCFP. The result of piano solo clearly demonstrate the power
of the proposed model: even when the sustain pedal is per-
formed through out the piece, most music notes are correctly
recognized, and their onset and offset time are well captured.
This indicates the high potential of the proposed model in
note-level transcription. For the result on the string quartet,
there are some more errors in the inner parts possibly due
to the diversity of instruments. However, it still captures the
pitches in the highest and lowest parts well.

The last row of Table 1 shows that using the HCFP feature
can achieve performance comparable to, but still lower than
the one of CFP, possibly because the harmonic information is
not that relevant to the fundamental frequencies.

2https://github.com/yoyololicon/translation-invariant

Fig. 2. The transcription results (in piano roll) of two ex-
cerpts from MAPS and MusicNet respectively. Top: the
result of ‘MAPS MUS-bk xmas5 ENSTDkCl.wav’ in the
‘MAPS/ENSTDkCl’ subset, which achieves an F-measure
of 0.9102. Bottom: the result of ‘2106.wav’ in ‘Music-
Net/test data’, which achieves an F-measure of 0.6861. Blue
line: TP. Green line: FP. Red line: FN.

The effectiveness of HCFP is demonstrated in MI-MPE.
Table 2 compares the MI-MPE results on MusicNet using the
CFP and HCFP representations. HCFP outperforms CFP ex-
cept for the cases of violin and horn. This indicates that HCFP
can generally improve multi-instrument transcription with the
incorporation of harmonic feature. As expected, the harmonic
information in HCQT could contribute more on specifying the
spectral patterns of different instruments.

4. CONCLUSION

We have demonstrated the effectiveness of semantic segmen-
tation models in joint transcription of pitch and instrument, by
reporting new state-of-the-art performance values on conven-
tional MPE tasks, and a new benchmark on multi-instrument
MPE. We also found that designing data representations re-
vealing pitch and instrument information from the aspect of
signal processing is a critical step to harness the power of
semantic segmentation models. These findings indicate fur-
ther research directions on more practical AMT tasks, such as
note-level transcription and multipitch streaming.
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