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ABSTRACT

The suppression of ego-noise for (humanoid) robots is typi-
cally addressed by learning-based techniques. In this paper,
we propose a novel approach which models significant parts
of ego-noise spectrograms based on motor data and does not
require a prior training step. Accordingly, the intrinsic har-
monic structure of ego noise is taken into account by intro-
ducing a nonnegative matrix factorization (NMF) framework
with motor data-driven dictionaries. Limited improvement
was observed by employing an additional pre-trained small-
sized dictionary accounting for the residual ego-noise. The
presented approach exhibits comparable suppression perfor-
mance to an audio only-based approach trained specifically to
the scenario, while the number of dictionary elements which
require prior learning can be reduced by a factor of two. For
ego-noise resulting from previously unseen movements, the
proposed method shows consistently superior suppression re-
sults while the audio only-based approach degrades drasti-
cally.

Index Terms— Ego-noise suppression, robot, motor data,
dictionary learning, nonnegative matrix factorization

1. INTRODUCTION

Microphone-equipped autonomous systems are exposed to
various kinds of noise, specifically to so-called ego-noise,
i.e., self-created noise. In this paper, we consider ego-noise
of a humanoid robot which is caused by its electrical and
mechanical components, e.g., motors and joints. Ego-noise
corrupts the recorded microphone signals and impairs the
robot’s capability to react autonomously to unanticipated
acoustic events. This motivates techniques for ego-noise sup-
pression, which is a key pre-processing step in robot audition
[1, 2, 3]. Since the robot performs movements with varying
speeds and accelerations, ego-noise is highly non-stationary,
but exhibits characteristic structure in the Short-Time Fourier
Transform (STFT) domain. Due to the limited number of de-
grees of freedom of the robot, those spectral patterns cannot
be arbitrarily diverse. These two facts motivate the use of

learning-based approaches, e.g., nonnegative matrix factor-
ization (NMF) [4, 5] or other dictionary-based methods such
as K-SVD [6, 7].

Aside from audio data, ego-noise suppression can exploit
reference information given by the known internal state of the
robot, e.g., the motor state information which is referred to
as motor data in the following. Exemplary approaches em-
ploy spectral subtraction for ego-noise reduction where the
required ego-noise power spectral densities (PSDs) are esti-
mated from motor data and used to train a noise model. For
this, a data base of ego-noise templates is proposed in [8, 9]
while the authors of [10] suggest an implicit ego-noise mod-
eling using a deep neural network.

While previous approaches exploit the use of motor
data for ego-noise suppression using entirely training-based
schemes, we propose in this paper the use of motor data in a
parametric manner and demonstrate its benefit to a pre-trained
method which employs audio but no motor data (referred to
as audio only-based in the following). We propose to ex-
plicitly account for the harmonic structure of ego-noise and
embed it into an NMF framework for ego-noise suppression.
This approach is inspired by harmonic-constraint NMF as it
is employed, e.g., for music analysis. In [11, 12], a multiple
pitch estimator is presented by assuming that the NMF bases
are given by a weighted sum of adjacent harmonics. A similar
approach was followed in [13] for tone separation and vibrato
modeling, where each dictionary entry represents a mixture
of harmonic contributions. In both approaches, the model
parameters are estimated blindly from given observations.

In the following, we suggest to model the intrinsic har-
monic parts of ego-noise by using a time-varying dictionary
determined by instantaneous motor data. We model the
residual ego-noise components in a second dictionary that is
trained using an NMF framework which takes the informa-
tion from the time-varying, motor data-driven dictionary into
account.

This paper is structured as follows. In Sec. 2.1, we de-
scribe the used motor data and their potential to estimate the
harmonic ego-noise components. After succinctly introduc-
ing NMF, we describe our proposed ego-noise modeling ap-
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proach to construct a motor data-driven dictionary in Sec. 2.2.
This is then combined with an additional dictionary modeling
the residual noise to jointly suppress ego-noise in Sec. 2.3.
The efficacy of the method is demonstrated in Sec. 3.

2. MOTOR DATA-INFORMED EGO-NOISE
SUPPRESSION

In the following, we consider the squared magnitude of a
single-channel microphone signal in the STFT domain, de-
noted as Y = [y1, . . . ,yT ] ∈ RF×T

+ , where F is the number
of frequency bins and T is the number of considered time
frames.

2.1. Harmonic structure estimation

A rotating engine typically produces noise with a harmonic,
deterministic structure in the spectrogram where the har-
monics appear at multiples of half of the rotation frequency
[14]. While this rotation frequency is usually not directly
observable for motors in a moving robot, it can be derived
using angular position observations collected by propriocep-
tors mounted to each joint of the robot. We denote the l-th
observed angular position in time frame t as α(l)

t for a given
proprioceptor and approximate angular speed by

α̇
(l)
t =

1

∆Ttl
·
(
α
(l)
t − α(l−1)

t

)
, (1)

where ∆Ttl denotes the time difference between adjacent ob-
servations α(l)

t and α
(l−1)
t . The frequency of the i-th har-

monic of the considered motor is then given by

i · f (l)0,t = 1
2 · i · α̇

(l)
t · γ, (2)

where γ is the so-called velocity-reduction-ratio that takes the
mechanical translation between motor and joint into account.
The left plot in Fig. 1 shows a spectrogram of a typical arm
movement of the robot NAOTM (see Sec. 3, [15]) with five
harmonics and its estimated versions. Obviously, however,
there are residual ego-noise parts that need to be addressed
separately.

2.2. Ego-noise Modeling

We propose to model ego-noise by

Y = YP + YR, (3)

where YP denotes the part of the spectrogram that can be es-
timated from motor data, while YR models the residual ego-
noise. In earlier work [16], we extracted YP and YR using the
estimated harmonic position and modeled both parts entirely
learning-based. In this paper, we propose a novel and more
efficient NMF-based motor data-driven model for YP that re-
quires no prior learning. To account for the residual YR, we
propose a second NMF-based dictionary which requires train-
ing, but is of low model complexity. Fig. 2 illustrates the pro-
posed ego-noise modeling approach.
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Fig. 1. Left: Spectrogram of an ego-noise recording for a
right arm movement of the humanoid robot NAOTM. Har-
monic components can be estimated (red) using Eq. 2 with
i = 1, . . . , 5. Right: Illustration of the proposed motor data-
based modeling of DP,t for an excerpt of the frequency range
and time frame t. L = 2 motor data samples per time frame
are considered.

2.2.1. Nonnegative Matrix Factorization (NMF)

The objective of NMF is to approximate the nonnegative ma-
trix Y by a product of two nonnegative matrices

Y ≈ Ŷ = DH = [Dh1, . . . ,DhT ] , (4)

where D ∈ RF×K
+ is the so-called dictionary of size F ×K

and H = [h1, . . . ,hT ] ∈ RK×T
+ is referred to as activation

matrix [17, 18]. This approach can be interpreted as approx-
imating each column of Y by a weighted sum of columns of
D (the so-called atoms or bases), where the weights are given
by the corresponding column entries of H . The factorization
is achieved by minimizing a cost function which measures
the similarity between Y and Ŷ with respect to the model
parameters. In this paper, we consider the Itakura-Saito (IS)
divergence as cost function, which is common and well suited
for audio applications since it depends only on the power ra-
tios between the true and approximated signal [4]. D and H
are typically obtained using iterative update rules that can be
derived using, e.g., Majorization-Minimization algorithms or
heuristic approaches [17, 19].

2.2.2. Modeling of YP

To model the harmonic structure of ego-noise explicitly in
each time frame, we propose to estimate YP from Eq. 3 by

ŶP = [DP,1hP,1, . . . ,DP,ThP,T ] , (5)

with time-varying dictionary DP,t of size F × KP and vec-
tor hP,t containing the KP activation weights for time frame
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Fig. 2. Illustration of the proposed NMF-based ego-noise
modeling approach for time frame t. Motor data is used to
estimate the harmonic structure of ego-noise, which is then
employed to construct the time-varying dictionary DP,t.

t. Note that a formulation as a single matrix-matrix multipli-
cation according to Eq. 4 is not possible here, since DP,t is
generally different for every t.

For the construction of DP,t, we assume that a propri-
oceptor collects L motor data samples α(l)

t , l = 1, . . . , L,
per time frame t. We can then approximate L angular speed
samples α̇(l)

t per time frame using Eq. 1, where each sample
contributes to each harmonic i according to Eq. 2. For each
harmonic i, the set of L samples actually forms for each har-
monic i a group of L spectral components which only overlap
if the temporal variation of α̇(l)

t is small. This is illustrated on
the right-hand side of Fig. 1 for L = 2 and two harmonics i,
i+ 1. We propose to model the i-th harmonic component in a
spectrogram frame yt by a set of L atoms d̃(l)

t,i , l = 1, . . . , L.

Here, d̃(l)
t,i describes the spectral contribution of α̇(l)

t and we
suggest to model it as a bell-shaped function centered around
i · f (l)0,t . The f -th component of d̃(l)

t,i is then given by

d̃
(l)
ft,i = exp

(
−
(
f − i · f (l)0,t

)2
/2w

)
, (6)

where w controls the width of the harmonic contribution and
reflects the temporal variation of α̇(l)

t . Based on this, we ex-
ploit the atoms d̃(l)

t,i , l = 1, . . . , L, to define the sub-dictionary

D̃t,i =
[
d̃
(1)
t,i . . . d̃

(L)
t,i

]
. Assuming I harmonics in a spec-

trogram frame yt, we finally obtain

DP,t =
[
D̃t,1 . . . D̃t,I

]
. (7)

The relative scaling of d̃(l)
t,i for different i is data-dependent

and determined implicitly by adapting the activation matrix
HP = [hP,1, . . . ,hP,T ] ∈ RKP×T

+ using the NMF update
rules (c.f. Sec. 2.3).

2.2.3. Modeling of YR

For YR, we propose a conventional NMF-based model ac-
cording to Eq. 4

ŶR = DRHR, (8)

with dictionary DR incorporating KR atoms. DR needs a
prior learning step, however has to capture only the residual
part of ego-noise and can be therefore of small size.

2.3. Proposed Algorithm for Ego-noise Suppression

We propose a two-stage algorithm for ego-noise suppres-
sion. First, we use audio data containing ego-noise only and
employ DP,t to model the harmonic components (see Sub-
sec. 2.3.1) while concurrently training DR on the residual part
of the ego-noise. Given a mixture of ego-noise and speech,
we employ DP,t and DR to model and suppress current ego-
noise and to obtain a speech estimate (see Subsec. 2.3.2).

2.3.1. Learning DR

As input, spectrograms Y = [y1, . . . ,yT ] are given contain-
ing ego-noise only. Per spectrogram sample, motor speed α̇(l)

t

is present which is used to construct DP,t using Eqs. 2, 6 and
7. Using Y , we employ the concept presented in [18] and up-
date DR, HR and HP = [hP,1, . . . ,hP,T ] using update rules
proposed in [17]. The set of t-dependent dictionaries DP,t re-
mains constant during multiple iterations of optimizing DR.

2.3.2. Ego-noise suppression

Another dictionary DS with activation HS is initialized to
model the additional speech signal in the considered mixture.
Using the same update rules as in the previous learning step,
DS, HP, HR and HS are updated while the set of t-dependent
dictionaries DP,t and DR remain constant. After identifying
the optimum model parameters captured by DS, HP, HR and
HS, we employ a spectral enhancement filter to obtain an esti-
mate of the desired speech signal Ŷ (speech)

ft = W (speech)
ft �Yft

for the ft-th bin, where � denotes element-wise multipli-
cation and where the enhancement filter matrix W (speech)

ft is
given by

W
(speech)
ft =

ŶS,ft

ŶP,ft + ŶR,ft + ŶS,ft
, (9)

with ŶS = DSHS.

3. EVALUATION

3.1. Experimental setup

To evaluate our approach, we conducted experiments with a
NAOTM H25 humanoid robot [15]. For audio recordings, we
used a modified head developed during the EU FP7 Project
EARS [20] with a microphone array of 12 sensors. For all
experiments, we used the frontmost microphone.

The measurements were conducted in a room with mod-
erate reverberation (T60 = 200 ms). We recorded ego-noise
of right arm movements, including six joints. All movements
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Table 1. Performance in dB achieved by the proposed method and audio only-based NMF.

Unproc. proposed proposed NMF proposed NMF proposed NMF proposed NMF
KR = 0 KR = 5 K = 5 KR = 10 K = 10 KR = 20 K = 20 KR = 30 K = 30

Sc
en

ar
io

I SDR -3.0 5.39 6.05 2.41 6.20 5.75 6.31 6.2 6.47 5.76
SIR -2.96 9.28 11.42 4.19 11.61 10.64 13.05 15.5 13.0 16.5
SAR 275.16 7.60 7.8 7.3 7.78 7.6 7.9 7.93 7.86 7.45

Sc
en

ar
io

II SDR -3.0 5.2 5.44 -0.42 5.56 -0.37 5.81 0.39 5.89 1.2
SIR -2.99 8.6 9.91 -1.1 11.1 -0.9 12.1 0.91 12.29 5.21
SAR 279.15 7.49 7.58 6.3 7.62 6.43 7.81 6.28 7.76 6.68

consist of lifting the arm using the right shoulder pitch mo-
tor, while performing waving movements with the remaining
five motors of the right arm. The recorded ego-noise was then
used for training and testing, where the testing data was not
contained in the training data. In total, we recorded 60 s of
ego-noise, the ratio of training to test data was 3 : 1. In the
following, we investigate two scenarios differing in the struc-
ture of the test data. In Scenario I, test data contains shoulder
pitch speeds similar to some contained in the training data.
In contrast, we consider shoulder pitch speeds in Scenario II
that were not contained in the training data. However, move-
ments of the remaining five joints are similar in both testing
and training. For testing, we consider a scenarios in which a
target source is talking to the robot while the robot performs
different waving movements of the right arm. For the speech,
utterances from the GRID corpus [21] were used. The loud-
speaker was positioned at 1 m distance of NAOTM, at a height
of 1 m. The recorded utterances were added to the movement
noise.

The audio signals are sampled at fS = 16 kHz and trans-
formed to the STFT domain using a Hamming window of
length 64 ms with overlap of 50 %. The sampling frequency
of the motor data is given by fM ≈ 100 Hz, i.e., L ≈ 6 motor
data samples are available per time frame. We use exclusively
motor data of the right shoulder pitch joint to approximate an-
gular speed and estimate the harmonics. We chose to model
I = 15 harmonics, where each harmonic contribution has
width w = 2. Both I and w were found heuristically to re-
sult in best performance for Scenario I, however both have
shown in our experiments to generalize well for other move-
ments. We compare our method to audio only-based NMF.
We evaluated both algorithms for different dictionary sizes
KR for the proposed method and K for NMF, i.e., we modify
the size of those dictionaries of both approaches that require
a prior training step. During testing, a speech dictionary with
size Kspeech = 20 for both approaches was chosen.

We evaluated the performance in terms of Signal-to-
Inference-Ratio (SIR in dB), Signal-to-Distortion-Ratio (SDR
in dB) and Signal-to-Artifacts-Ratio (SAR in dB), using Mat-

lab functions provided by [22]. All results are averaged over
100 runs.

3.2. Discussion of Results

The results are summarized in Table 1. For both scenarios,
using only the motor data-driven dictionary (KR = 0) (recall
that no prior training is needed for this) shows already a sig-
nificant gain compared to unprocessed data for all evaluation
criteria. For Scenario I, the proposed method outperforms
audio only-based NMF for small dictionary sizes, since the
residual part of ego-noise can be well modeled with a small
number of bases. In contrast, an NMF-trained dictionary has
to capture both harmonics and residual and therefore requires
approximately twice the number of bases to produce com-
parable performance results. For Scenario II, the proposed
approach clearly outperforms NMF for all dictionary sizes
since the evaluated shoulder pitch speeds were not contained
in the training data. As the noise contribution of the remain-
ing arm components was similar in both training and testing,
employing the residual dictionary slightly improves the re-
sult. For the same reason, audio only-based NMF shows a
slight improvement for increasing K, since for larger K the
learned dictionary models harmonics and residual in separate
bases. However, this discriminative effect is only weakly pro-
nounced.

4. CONCLUSION AND OUTLOOK

In this paper, we presented a semi-supervised NMF-based
ego-noise suppression approach where the harmonic ego-
noise components were modeled using a time-varying, motor
data-driven dictionary which does not require a prior training
step. The proposed method shows robust suppression results
even for ego-noise that was not seen during training. For
future work, we plan to apply the presented concept to mul-
tichannel NMF, where the variance modeling is extended by
a spatial covariance matrix for each atom and frequency bin,
c.f. [5, 23].
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