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ABSTRACT
In this paper, we deal with a multichannel source separation
problem under a highly reverberant condition. The multichan-
nel variational autoencoder (MVAE) is a recently proposed
source separation method that employs the decoder distribu-
tion of a conditional VAE (CVAE) as the generative model
for the complex spectrograms of the underlying source sig-
nals. Although MVAE is notable in that it can significantly
improve the source separation performance compared with
conventional methods, its capability to separate highly rever-
berant mixtures is still limited since MVAE uses an instan-
taneous mixture model. To overcome this limitation, in this
paper we propose extending MVAE to simultaneously solve
source separation and dereverberation problems by formulat-
ing the separation system as a frequency-domain convolutive
mixture model. A convergence-guaranteed algorithm based
on the coordinate descent method is derived for the optimiza-
tion. Experimental results revealed that the proposed method
outperformed the conventional methods in terms of all the
source separation criteria in highly reverberant environments.

Index Terms— Blind source separation, blind derever-
beration, multichannel audio signal processing, multichannel
variational autoencoder (MVAE)

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating
individual source signals from recorded microphone array in-
puts without any prior information about source signals and
the transfer characteristics between sources and microphones.
The most commonly used approach for determined BSS prob-
lems is independent component analysis (ICA) [1], which
achieves source separation by assuming the statistical inde-
pendence between the sources. Among the ICA-based meth-
ods, those methods performing separation in the frequency
domain provide the flexibility of utilizing various models for
the time–frequency representations of source signals and ar-
ray responses, which play critical roles in BSS. For example,
independent vector analysis (IVA) [2–4] solves frequency-
wise source separation and permutation alignment simulta-
neously by assuming that the magnitudes of the frequency
components originating from the same source tend to vary
coherently over time. Determined multichannel non-negative
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matrix factorization (DMNMF) [5], which was later named as
independent low-rank matrix analysis (ILRMA) [6,7], adopts
the NMF concept to source spectrogram modeling that ap-
proximates each source power spectrogram as the linear com-
bination of a limited set of spectral templates scaled by mag-
nitudes varying with time.

Recently, to achieve further improvements, some attempts
have been made to combine deep neural networks (DNNs)
with the ICA-based multichannel source separation frame-
work [8–10]. One of them is the multichannel variational
autoencoder (MVAE) [10]. MVAE trains a conditional VAE
using spectrograms of clean source signals and the corres
ponding attribute class labels so that the trained decoder dis-
tribution can be used as a generative model of the underlying
source signals in a mixture, which is called the CVAE source
model. MVAE has shown to significantly outperform conven-
tional methods, which indicates that the CVAE source model
has the capability to improve the source separation perfor-
mance. However, one drawback is that the source separation
performance degrades in highly reverberant environments
since MVAE assumes an instantaneous mixture model.

To address this drawback, this study proposes an ex-
tension of MVAE that allows us to simultaneously per-
form source separation and dereverberation. Specifically,
we formulate the separation system of mixture signals as
a frequency-domain convolutive mixture model, which has
been shown to be effective for separating highly reverberant
mixtures in many previous studies [5, 11, 12].

The rest of this paper is structured as follows. In Section
2, we formulate a multichannel BSS problem with instanta-
neous mixture models and review MVAE. In Section 3, we
present the MVAE using frequency-domain convolutive mix-
ture models and derive a convergence-guaranteed algorithm
for the optimization. The results of highly reverberant source
separation experiments are presented in Section 4.

2. MULTICHANNEL VARIATIONAL
AUTOENCODER

We consider a determined situation where J source signals
are observed by I microphones (J = I). Let xi(f, n) and
sj(f, n) denote the short-time Fourier transform (STFT) co-
efficients of the signal observed at the i-th microphone and
the j-th source signal, where f and n are the frequency and
time indices, respectively. Now, we use a separation system
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of the form

s(f, n) = W H(f)x(f, n), (1)

W (f) = [w1(f), . . . ,wI(f)] ∈ CI×I (2)

to describe the relationship between the observed signals
x(f, n) = [x1(f, n), . . . , xI(f, n)]

T ∈ CI and sources
s(f, n) = [s1(f, n), . . . , sI(f, n)]

T ∈ CI , where W H(f)
is called the separation matrix and (·)H denotes Hermitian
transpose.

Let us assume that sj(f, n) independently follows a zero-
mean complex Gaussian distribution with variance vj(f, n) =
E[|sj(f, n)|2]

sj(f, n) ∼ NC(sj(f, n)|0, vj(f, n)). (3)

We call (3) the local Gaussian model (LGM). We further as-
sume sj(f, n) to be independent from one source to the oth-
ers. s(f, n) thus follows

s(f, n) ∼ NC(s(f, n)|0,V (f, n)), (4)

where V (f, n) is a diagonal matrix with diagonal entries
v1(f, n), . . . , vI(f, n). From (1) and (4), we can show that
x(f, n) follows

x(f, n) ∼ NC(x(f, n)|0, (W H(f))−1V (f, n)W (f)−1). (5)

Hence, the negative log-likelihood of the parameters V =
{vj(f, n)}f,n,j and W = {W H(f)}f given the observed
mixture signals X = {xi(f, n)}i,f,n is given as

L(V,W|X ) c
=− 2N log

∣∣detW H(f)
∣∣

+
∑
f,n,j

(
log vj(f, n) +

|sj(f, n)|2

vj(f, n)

)
, (6)

where =c denotes equality up to constant terms. It is impor-
tant to note that if we individually treat vj(f, n) as a free pa-
rameter indexed by frequency f , the negative log-likelihood
will be split into frequency-wise source separation problems.
This means that the permutation of the separated components
in each frequency is not uniquely determined. Permutation
alignment is thus needed afterW has been obtained.

To solve this problem, for MVAE [10], a conditional
VAE (CVAE) [13] is used to model and estimate the spec-
trograms of the sources sj(f, n). Let S = {s(f, n)}f,n be
the complex spectrogram of a particular sound source and
c be the corresponding attribute class label, which is rep-
resented as a one hot vector. With a set of labeled training
samples {Sm, cm}Mm=1, a CVAE network consisting of an en-
coder network qϕ(z|S, c) and a decoder network pθ(S|z, c)
is trained jointly by maximizing

J (ϕ, θ) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]
−KL[qϕ(z|S, c)||p(z)]], (7)

where E(S,c)∼pD(S,c)[·] denotes the sample mean over the
training examples and KL[·||·] is the Kullback–Leibler di-
vergence. Here, MVAE defines the decoder distribution as
a zero-mean complex Gaussian distribution as follows so that

it has the same form as the LGM (3).

pθ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, v(f, n)), (8)

v(f, n) = g · σ2
θ(f, n; z, c), (9)

where σ2
θ(f, n; z, c) denotes the (f, n)-th element of the de-

coder output and g represents the global scale of the generated
spectrogram. Regarding the encoder distribution qϕ(z|S, c),
a regular Gaussian distribution is adopted

qϕ(z|S, c) =
∏
k

N (z(k)|µϕ(k;S, c), σ
2
ϕ(k;S, c)), (10)

where z(k), µϕ(k;S, c) and σ2
ϕ(k;S, c) represent the k-th el-

ement of the latent space variable z and the encoder outputs
µϕ(S, c) and σ2

ϕ(S, c), respectively. The trained decoder dis-
tribution can then be used as a generative model of the com-
plex spectrogram of the j-th source pθ(Sj |zj , cj , gj), where
zj , cj and gj are the unknown parameters of the model. This
generative model is called the CVAE source model. The opti-
mization algorithm of MVAE consists of iteratively updating
the separation matrices W using the iterative projection (IP)
method [4], the source model parameters Ψ = {zj , cj}j us-
ing backpropagation and the global scale G = {gj}j using the
following update rule:

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ2
θ(f, n; zj , cj)

. (11)

MVAE is notable in that (i) it takes full advantage of the
strong representation power of DNNs for source power spec-
trogram modeling, and (ii) the convergence of the source sep-
aration algorithm is guaranteed. However, similar to the other
instantaneous mixture model-based methods, the source sep-
aration capability of MVAE is limited in a highly reverberant
environment where the length of the room impulse responses
(RIRs) can be large than the STFT frame length.

3. PROPOSED METHOD

3.1. Formulation

In this section, we describe the proposed method that extends
MVAE to simultaneously solve source separation and dere-
verberation problems. Specifically, instead of the instanta-
neous mixture model (1), we formulate the separation sys-
tem as a frequency-domain convolutive mixture model, which
has been shown to be effective for separating highly reverber-
ant mixtures [5, 11, 12]. With the frequency-domain convo-
lutive mixture model that has a multichannel finite-impulse-
response form, the relationship between the observed signals
x(f, n) and sources s(f, n) is written as

s(f, n) =

N ′∑
n′=0

W H(f, n′)x(f, n− n′). (12)

Here, W H(f, n′), 0 ≤ n′ ≤ N ′ are the coefficient matrices
of size I × I and W H(f, 0) is equivalent to W H(f) in (1).
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When W H(f, 0) is invertible, the dereverberated mixture sig-
nal y(f, n) = [yi(f, n), . . . , yI(f, n)]

T ∈ CI and the source
signal s(f, n) can be written as

y(f, n) = x(f, n)−
N ′∑

n′=1

DH(f, n′)x(f, n− n′), (13)

s(f, n) = W H(f, 0)y(f, n), (14)

where DH(f, n′) = −(W H(f, 0))−1W H(f, n′), 1 ≤ n′ ≤
N ′. Note that (13) can be seen as a dereverberation process
of the observed mixture signal x(f, n), whereas (14) can be
seen as an instantaneous demixing processing of the derever-
berated mixture signal y(f, n). Therefore, the negative log-
likelihood of interest is a function of the dereverberation filter
D = {DH(f, n′)}f,n′ , separation matrices W , spectral pa-
rameters Ψ and scale parameter G:

I(D,W,Ψ,G|X )
c
=−2N log

∣∣detW H(f)
∣∣+ ∑

f,n,j

(
log vj(f, n)

+
|wH

j (f)(x(f, n)−
∑N′

n′=1 D
H(f, n′)x(f, n−n′))|2

vj(f, n)

)
.

(15)
3.2. Related work

In [12], the idea of formulating the separation system of
highly reverberant mixture signals using a frequency-domain
convolutive mixture model has been adopted to ILRMA [6],
which allows the method to solve source separation and
dereverberation simultaneously. We refer to this method
as ILRMA+ hereafter. The proposed method is different
from ILRMA+ in the way of modeling the sources sj(f, n),
where the proposed method uses the CVAE source model
whereas ILRMA+ employs a non-negative matrix factor-
ization model. Specifically, ILRMA+ models the variance
vj(f, n) =

∑Kj

k=1 bj,k(f)hj,k(n), which amounts to assum-
ing that the power spectrograms of source signals can be
approximated by the linear combination of a small number
of spectral templates bj,1(f), . . . , bj,Kj

(f) ≥ 0 scaled by
magnitudes varying with time hj,1(n), . . . , hj,Kj (n) ≥ 0.
From this viewpoint, the proposed method can be seen as
an extension of ILRMA+ that replaces the NMF model with
the CVAE source model to achieve better source separation
performance by enhancing the representation power of the
source model.

3.3. Optimization process

We describe the optimization algorithm in this subsection, in
which the objective function (15) is iteratively decreased us-
ing a coordinate descent method in which each iteration com-
prises the following four minimization steps:

D̂ ← argmin
D

I(D,W,Ψ,G|X ), (16)

Ŵ ← argmin
W

I(D,W,Ψ,G|X ), (17)

Ψ̂← argmin
Ψ

I(D,W,Ψ,G|X ), (18)

Ĝ ← argmin
G
I(D,W,Ψ,G|X ). (19)

By dropping the constant terms with respect to D from
(15), we obtain

I(D) =
∑
f,n

∣∣∣x(f, n)− N ′∑
n′=1

DH(f, n′)x(f, n−n′)
∣∣∣2
Σw/v(f,n)

,

(20)

where |x|Σw/v(f,n)
=
√

xHΣw/v(f,n)x with Σw/v(f,n) =∑
j

wj(f)w
H
j (f)

vj(f,n)
, which is assumed to be positive definite. To

obtain independent updating rules for each f , we vectorize
{D(f, n′)}n′ as

d(f) = [dT
1(f, 1), . . . ,d

T
I (f, 1),d

T
1(f, 2), . . . ,d

T
I (f, 2), . . . ,

dT
1(f,N

′), . . . .,dT
I (f,N

′)]T ∈ CI2N ′
, (21)

where di(f, n
′) is the i-th column of D(f, n′). Thus, the term∑N ′

n′=1 D
H(f, n′)x(f, n− n′) in (20) can be rewritten as

N ′∑
n′=1

DH(f, n′)x(f, n− n′) = X(f, n)d∗(f), (22)

where d∗(f) represents the complex conjugate of d(f) and

X(f, n) = [I ⊗ xT(f, n− 1), I ⊗ xT(f, n− 2), . . . ,

I ⊗ xT(f, n−N ′)] ∈ CI×I2N ′
. (23)

Here, ⊗ stands for the Kronecker product. By substituting
(22) into (20), we obtain

I(D) =
∑
f,n

(
x(f, n)−X(f, n)d∗(f)

)H
×Σw/v(f,n)

(
x(f, n)−X(f, n)d∗(f)

)
. (24)

Since (24) is a quadratic equation with respect to d∗(f), this
function can be readily minimized by calculating the partial
derivative of I(D) to be zero. The update rules for each d∗(f)
is given as a closed form:

d∗(f)←

(∑
n

XH(f, n)Σw/v(f,n)X(f, n)

)−1

×

(∑
n

XH(f, n)Σw/v(f,n)x(f, n)

)
. (25)

We employ the following update rules derived on the basis of
the IP method [4] to updateW:

wj(f)← (W H(f, 0)Σy/vj(f))
−1ej , (26)

wj(f)←
wj(f)√

wH
j (f)Σy/vj

(f)wj(f)
, (27)

where Σy/vj
(f) = (1/N)

∑
n y(f, n)y

H(f, n)/vj(f, n) and
ej denotes the j-th column of the I × I identity matrix.
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Fig. 1. Microphone and source positions, where ◦ and × rep-
resent the positions of microphones and sources, respectively.

To update Ψ and G, we apply backpropagation and (11).
The parameters of encoder and decoder network are trained
by maximizing (7) with labeled clean audio samples. These
training and optimization procedures are the same as those of
MVAE.

Therefore, the proposed algorithm is summarized as fol-
lows:

1. Train θ and ϕ using (7).
2. Initialize Ψ, G,W and D.
3. Repeat the following updates until convergence.

(a) Update wj(f) for each j using (26) and (27).
(b) Update zj , cj for each j using backpropagation.
(c) Update gj for each j using (11).

(d) Update d∗(f) for each f using (25).

4. EXPERIMENTS

To evaluate the effectiveness of the proposed method in
highly reverberant environments, we conducted experiments
in which we compared the source separation performance of
the proposed approach with those of ILRMA [6], MVAE [10]
and ILRMA+ [12]. Specifically, we used RIRs measured
in a Japanese-style room (JR1) and an office room (OFC),
the reverberation times (T60) of which were 0.60 s and 0.78
s, respectively. Fig. 1 shows the two configurations of the
microphones and sources we tested. We used utterances of
two female speakers “SF1” and “SF2”, and two male speak-
ers “SM1” and “SM2” excerpted from the Voice Conversion
Challenge (VCC) 2018 dataset [14] for composing the train-
ing and evaluation sets. The audio files for each speaker were
manually segmented into 116 short sentences (about 7 min)
where 81 and 35 sentences (about 5 and 2 min) were provided
as training and evaluation sets, respectively. We generated 10
speech combinations for each speaker pair, namely, SF1+SF2,
SF1+SM1, SF2+SM2 and SM1+SM2. Hence, there were in
total 80 test signal in each reverberant environment. The
length of each signal was about 4 to 7 s long. Speaker iden-
tities were considered as the only class category. Thus, the
class label c was a four-dimensional one hot vector.

All mixture signals were resampled at 16 kHz. The STFT
was computed using the Hamming window with 256 ms long
and 64 ms window shift. For ILRMA and ILRMA+, the ba-
sis number K was set at 5. The dereverberation filter length
N ′ was set at 3 for JR1 and 4 for OFC, respectively. We run

Table 1. The average SDR, SIR and SAR improvements
achieved by each method. The bold font shows the top scores.

RIRs Methods Improvement (dB)
SDR SIR SAR

JR1
T60 = 0.60 (s)

ILRMA 2.57 7.60 -0.94
ILRMA+ 5.06 11.20 1.15
MVAE 3.68 10.67 -0.42

MVAE+ 6.66 14.74 2.22

OFC
T60 = 0.78 (s)

ILRMA 2.43 7.48 -1.04
ILRMA+ 5.43 11.48 1.63
MVAE 3.53 10.43 -0.50

MVAE+ 6.89 14.90 2.64

100 iterations for ILRMA and ILRMA+, and 60 iterations for
MVAE and the proposed method. To initialize W H(f) and
DH(f, n′) of the proposed method, we run ILRMA+ for 30
iterations. For the encoder and decoder networks, we em-
ployed the same architectures as those used in [10], i.e., a
three-layer fully convolutional network with gated linear units
(GLUs) [15] and a three-layer fully deconvolutional network
with GLUs. Adam optimization [16] was used for training
CVAE and estimating Ψ during the source separation. Note
that we must take into account the sum-to-one constraints
when updating cj . This can be easily implemented by insert-
ing an appropriately designed softmax layer

cj = Softmax(uj), (28)

and treat uj as the parameter to be estimated instead.
We took the average of the signal-to-distortion ratios

(SDR), signal-to-interference ratios (SIR) and signal-to-
artifact ratios (SAR) [17] as the evaluation criteria. Table
1 shows the separation performances under the two reverber-
ant conditions. The proposed method is shown to outperform
all the conventional methods in terms of SDR, SIR and SAR.
By comparing the results of ILRMA+ and the proposed
method with those of ILRMA and MVAE, it is confirmed
that the frequency-domain convolutive mixture models are
effective for improving the source separation performances
under highly reverberant conditions.

5. CONCLUSIONS

In this paper, we proposed an extension of MVAE that is
capable of solving source separation and dereverberation
problems simultaneously by formulating the separation sys-
tem as a frequency-domain convolutive mixture model. A
convergence-guaranteed optimization process was derived,
which consists of iteratively updating (i) the spectral param-
eters of each source by applying backpropagation using the
CVAE source model, (ii) the separation matrices using the IP
method and (iii) the dereverberation filters using multichannel
linear prediction. The experimental results showed that the
combination of the CVAE source model and the frequency-
domain convolutive mixture model was able to improve the
source separation performances in highly reverberant envi-
ronments.
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